ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en3d Unicode version

Theorem en3d 6272
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1  |-  ( ph  ->  A  e.  _V )
en3d.2  |-  ( ph  ->  B  e.  _V )
en3d.3  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
en3d.4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
en3d.5  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
Assertion
Ref Expression
en3d  |-  ( ph  ->  A  ~~  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2  |-  ( ph  ->  A  e.  _V )
2 en3d.2 . 2  |-  ( ph  ->  B  e.  _V )
3 eqid 2081 . . 3  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
4 en3d.3 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
54imp 122 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
6 en3d.4 . . . 4  |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )
76imp 122 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
8 en3d.5 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  =  D  <->  y  =  C ) ) )
98imp 122 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
103, 5, 7, 9f1o2d 5725 . 2  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-onto-> B
)
11 f1oen2g 6258 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
x  e.  A  |->  C ) : A -1-1-onto-> B )  ->  A  ~~  B
)
121, 2, 10, 11syl3anc 1169 1  |-  ( ph  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785    |-> cmpt 3839   -1-1-onto->wf1o 4921    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-en 6245
This theorem is referenced by:  en3i  6274  fundmen  6309  fzen  9062
  Copyright terms: Public domain W3C validator