| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0breq | Unicode version | ||
| Description: Equivalence relation for non-negative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| enq0breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5541 |
. . . . . 6
| |
| 2 | oveq12 5541 |
. . . . . 6
| |
| 3 | 1, 2 | eqeqan12d 2096 |
. . . . 5
|
| 4 | 3 | an42s 553 |
. . . 4
|
| 5 | 4 | copsex4g 4002 |
. . 3
|
| 6 | 5 | anbi2d 451 |
. 2
|
| 7 | opexg 3983 |
. . 3
| |
| 8 | opexg 3983 |
. . 3
| |
| 9 | eleq1 2141 |
. . . . . 6
| |
| 10 | 9 | anbi1d 452 |
. . . . 5
|
| 11 | eqeq1 2087 |
. . . . . . . 8
| |
| 12 | 11 | anbi1d 452 |
. . . . . . 7
|
| 13 | 12 | anbi1d 452 |
. . . . . 6
|
| 14 | 13 | 4exbidv 1791 |
. . . . 5
|
| 15 | 10, 14 | anbi12d 456 |
. . . 4
|
| 16 | eleq1 2141 |
. . . . . 6
| |
| 17 | 16 | anbi2d 451 |
. . . . 5
|
| 18 | eqeq1 2087 |
. . . . . . . 8
| |
| 19 | 18 | anbi2d 451 |
. . . . . . 7
|
| 20 | 19 | anbi1d 452 |
. . . . . 6
|
| 21 | 20 | 4exbidv 1791 |
. . . . 5
|
| 22 | 17, 21 | anbi12d 456 |
. . . 4
|
| 23 | df-enq0 6614 |
. . . 4
| |
| 24 | 15, 22, 23 | brabg 4024 |
. . 3
|
| 25 | 7, 8, 24 | syl2an 283 |
. 2
|
| 26 | opelxpi 4394 |
. . . 4
| |
| 27 | opelxpi 4394 |
. . . 4
| |
| 28 | 26, 27 | anim12i 331 |
. . 3
|
| 29 | 28 | biantrurd 299 |
. 2
|
| 30 | 6, 25, 29 | 3bitr4d 218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-iota 4887 df-fv 4930 df-ov 5535 df-enq0 6614 |
| This theorem is referenced by: enq0eceq 6627 nqnq0pi 6628 addcmpblnq0 6633 mulcmpblnq0 6634 mulcanenq0ec 6635 nnnq0lem1 6636 |
| Copyright terms: Public domain | W3C validator |