| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvincg | Unicode version | ||
| Description: A variable introduction law for class equality, deduction version. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
| Ref | Expression |
|---|---|
| eqvincg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2613 |
. . . 4
| |
| 2 | ax-1 5 |
. . . . . 6
| |
| 3 | eqtr 2098 |
. . . . . . 7
| |
| 4 | 3 | ex 113 |
. . . . . 6
|
| 5 | 2, 4 | jca 300 |
. . . . 5
|
| 6 | 5 | eximi 1531 |
. . . 4
|
| 7 | pm3.43 566 |
. . . . 5
| |
| 8 | 7 | eximi 1531 |
. . . 4
|
| 9 | 1, 6, 8 | 3syl 17 |
. . 3
|
| 10 | nfv 1461 |
. . . 4
| |
| 11 | 10 | 19.37-1 1604 |
. . 3
|
| 12 | 9, 11 | syl 14 |
. 2
|
| 13 | eqtr2 2099 |
. . 3
| |
| 14 | 13 | exlimiv 1529 |
. 2
|
| 15 | 12, 14 | impbid1 140 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: dff13 5428 f1eqcocnv 5451 |
| Copyright terms: Public domain | W3C validator |