| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqtr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2083 |
. 2
| |
| 2 | eqtr 2098 |
. 2
| |
| 3 | 1, 2 | sylanb 278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: eqvinc 2718 eqvincg 2719 moop2 4006 reusv3i 4209 relop 4504 fliftfun 5456 th3qlem1 6231 enq0ref 6623 enq0tr 6624 genpdisj 6713 addlsub 7474 0dvds 10215 cncongr1 10485 |
| Copyright terms: Public domain | W3C validator |