ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eroprf2 Unicode version

Theorem eroprf2 6223
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1  |-  J  =  ( A /.  .~  )
eropr2.2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
eropr2.3  |-  ( ph  ->  .~  e.  X )
eropr2.4  |-  ( ph  ->  .~  Er  U )
eropr2.5  |-  ( ph  ->  A  C_  U )
eropr2.6  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
eropr2.7  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
Assertion
Ref Expression
eroprf2  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    X, p, q, r, s, t, u, z    .+ , p, q, r, s, t, u, x, y, z    .~ , p, q, r, s, t, u, x, y, z    J, p, q, x, y, z    ph, p, q, r, s, t, u, x, y, z
Allowed substitution hints:    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    X( x, y)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2  |-  J  =  ( A /.  .~  )
2 eropr2.3 . 2  |-  ( ph  ->  .~  e.  X )
3 eropr2.4 . 2  |-  ( ph  ->  .~  Er  U )
4 eropr2.5 . 2  |-  ( ph  ->  A  C_  U )
5 eropr2.6 . 2  |-  ( ph  ->  .+  : ( A  X.  A ) --> A )
6 eropr2.7 . 2  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  A  /\  u  e.  A
) ) )  -> 
( ( r  .~  s  /\  t  .~  u
)  ->  ( r  .+  t )  .~  (
s  .+  u )
) )
7 eropr2.2 . 2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [ q ]  .~  )  /\  z  =  [ (
p  .+  q ) ]  .~  ) }
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 6222 1  |-  ( ph  -> 
.+^  : ( J  X.  J ) --> J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   E.wrex 2349    C_ wss 2973   class class class wbr 3785    X. cxp 4361   -->wf 4918  (class class class)co 5532   {coprab 5533    Er wer 6126   [cec 6127   /.cqs 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-er 6129  df-ec 6131  df-qs 6135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator