ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym Unicode version

Theorem ersym 6141
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ersym  |-  ( ph  ->  B R A )

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3  |-  ( ph  ->  A R B )
2 ersym.1 . . . . . 6  |-  ( ph  ->  R  Er  X )
3 errel 6138 . . . . . 6  |-  ( R  Er  X  ->  Rel  R )
42, 3syl 14 . . . . 5  |-  ( ph  ->  Rel  R )
5 brrelex12 4399 . . . . 5  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
64, 1, 5syl2anc 403 . . . 4  |-  ( ph  ->  ( A  e.  _V  /\  B  e.  _V )
)
7 brcnvg 4534 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
87ancoms 264 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
96, 8syl 14 . . 3  |-  ( ph  ->  ( B `' R A 
<->  A R B ) )
101, 9mpbird 165 . 2  |-  ( ph  ->  B `' R A )
11 df-er 6129 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
1211simp3bi 955 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
132, 12syl 14 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
1413unssad 3149 . . 3  |-  ( ph  ->  `' R  C_  R )
1514ssbrd 3826 . 2  |-  ( ph  ->  ( B `' R A  ->  B R A ) )
1610, 15mpd 13 1  |-  ( ph  ->  B R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601    u. cun 2971    C_ wss 2973   class class class wbr 3785   `'ccnv 4362   dom cdm 4363    o. ccom 4367   Rel wrel 4368    Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-er 6129
This theorem is referenced by:  ercl2  6142  ersymb  6143  ertr2d  6146  ertr3d  6147  ertr4d  6148  erth  6173  erinxp  6203
  Copyright terms: Public domain W3C validator