| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erth | Unicode version | ||
| Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| erth.1 |
|
| erth.2 |
|
| Ref | Expression |
|---|---|
| erth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . . . . 7
| |
| 2 | erth.1 |
. . . . . . . . 9
| |
| 3 | 2 | ersymb 6143 |
. . . . . . . 8
|
| 4 | 3 | biimpa 290 |
. . . . . . 7
|
| 5 | 1, 4 | jca 300 |
. . . . . 6
|
| 6 | 2 | ertr 6144 |
. . . . . . 7
|
| 7 | 6 | impl 372 |
. . . . . 6
|
| 8 | 5, 7 | sylan 277 |
. . . . 5
|
| 9 | 2 | ertr 6144 |
. . . . . 6
|
| 10 | 9 | impl 372 |
. . . . 5
|
| 11 | 8, 10 | impbida 560 |
. . . 4
|
| 12 | vex 2604 |
. . . . 5
| |
| 13 | erth.2 |
. . . . . 6
| |
| 14 | 13 | adantr 270 |
. . . . 5
|
| 15 | elecg 6167 |
. . . . 5
| |
| 16 | 12, 14, 15 | sylancr 405 |
. . . 4
|
| 17 | errel 6138 |
. . . . . . 7
| |
| 18 | 2, 17 | syl 14 |
. . . . . 6
|
| 19 | brrelex2 4401 |
. . . . . 6
| |
| 20 | 18, 19 | sylan 277 |
. . . . 5
|
| 21 | elecg 6167 |
. . . . 5
| |
| 22 | 12, 20, 21 | sylancr 405 |
. . . 4
|
| 23 | 11, 16, 22 | 3bitr4d 218 |
. . 3
|
| 24 | 23 | eqrdv 2079 |
. 2
|
| 25 | 2 | adantr 270 |
. . 3
|
| 26 | 2, 13 | erref 6149 |
. . . . . . 7
|
| 27 | 26 | adantr 270 |
. . . . . 6
|
| 28 | 13 | adantr 270 |
. . . . . . 7
|
| 29 | elecg 6167 |
. . . . . . 7
| |
| 30 | 28, 28, 29 | syl2anc 403 |
. . . . . 6
|
| 31 | 27, 30 | mpbird 165 |
. . . . 5
|
| 32 | simpr 108 |
. . . . 5
| |
| 33 | 31, 32 | eleqtrd 2157 |
. . . 4
|
| 34 | 25, 32 | ereldm 6172 |
. . . . . 6
|
| 35 | 28, 34 | mpbid 145 |
. . . . 5
|
| 36 | elecg 6167 |
. . . . 5
| |
| 37 | 28, 35, 36 | syl2anc 403 |
. . . 4
|
| 38 | 33, 37 | mpbid 145 |
. . 3
|
| 39 | 25, 38 | ersym 6141 |
. 2
|
| 40 | 24, 39 | impbida 560 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-er 6129 df-ec 6131 |
| This theorem is referenced by: erth2 6174 erthi 6175 qliftfun 6211 eroveu 6220 th3qlem1 6231 enqeceq 6549 enq0eceq 6627 nnnq0lem1 6636 enreceq 6913 prsrlem1 6919 |
| Copyright terms: Public domain | W3C validator |