ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth Unicode version

Theorem erth 6173
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1  |-  ( ph  ->  R  Er  X )
erth.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erth  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  ph )
2 erth.1 . . . . . . . . 9  |-  ( ph  ->  R  Er  X )
32ersymb 6143 . . . . . . . 8  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
43biimpa 290 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  B R A )
51, 4jca 300 . . . . . 6  |-  ( (
ph  /\  A R B )  ->  ( ph  /\  B R A ) )
62ertr 6144 . . . . . . 7  |-  ( ph  ->  ( ( B R A  /\  A R x )  ->  B R x ) )
76impl 372 . . . . . 6  |-  ( ( ( ph  /\  B R A )  /\  A R x )  ->  B R x )
85, 7sylan 277 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  A R x )  ->  B R x )
92ertr 6144 . . . . . 6  |-  ( ph  ->  ( ( A R B  /\  B R x )  ->  A R x ) )
109impl 372 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  B R x )  ->  A R x )
118, 10impbida 560 . . . 4  |-  ( (
ph  /\  A R B )  ->  ( A R x  <->  B R x ) )
12 vex 2604 . . . . 5  |-  x  e. 
_V
13 erth.2 . . . . . 6  |-  ( ph  ->  A  e.  X )
1413adantr 270 . . . . 5  |-  ( (
ph  /\  A R B )  ->  A  e.  X )
15 elecg 6167 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  X )  ->  ( x  e.  [ A ] R  <->  A R x ) )
1612, 14, 15sylancr 405 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  A R x ) )
17 errel 6138 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
182, 17syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
19 brrelex2 4401 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
2018, 19sylan 277 . . . . 5  |-  ( (
ph  /\  A R B )  ->  B  e.  _V )
21 elecg 6167 . . . . 5  |-  ( ( x  e.  _V  /\  B  e.  _V )  ->  ( x  e.  [ B ] R  <->  B R x ) )
2212, 20, 21sylancr 405 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ B ] R  <->  B R x ) )
2311, 16, 223bitr4d 218 . . 3  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
2423eqrdv 2079 . 2  |-  ( (
ph  /\  A R B )  ->  [ A ] R  =  [ B ] R )
252adantr 270 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  R  Er  X )
262, 13erref 6149 . . . . . . 7  |-  ( ph  ->  A R A )
2726adantr 270 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R A )
2813adantr 270 . . . . . . 7  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  X )
29 elecg 6167 . . . . . . 7  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A  e.  [ A ] R  <->  A R A ) )
3028, 28, 29syl2anc 403 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ A ] R  <->  A R A ) )
3127, 30mpbird 165 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ A ] R )
32 simpr 108 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  [ A ] R  =  [ B ] R
)
3331, 32eleqtrd 2157 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ B ] R )
3425, 32ereldm 6172 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  X  <->  B  e.  X ) )
3528, 34mpbid 145 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B  e.  X )
36 elecg 6167 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A  e.  [ B ] R  <->  B R A ) )
3728, 35, 36syl2anc 403 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ B ] R  <->  B R A ) )
3833, 37mpbid 145 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B R A )
3925, 38ersym 6141 . 2  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R B )
4024, 39impbida 560 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   class class class wbr 3785   Rel wrel 4368    Er wer 6126   [cec 6127
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-er 6129  df-ec 6131
This theorem is referenced by:  erth2  6174  erthi  6175  qliftfun  6211  eroveu  6220  th3qlem1  6231  enqeceq  6549  enq0eceq  6627  nnnq0lem1  6636  enreceq  6913  prsrlem1  6919
  Copyright terms: Public domain W3C validator