ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn Unicode version

Theorem euabsn 3462
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )

Proof of Theorem euabsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3461 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 nfv 1461 . . 3  |-  F/ y { x  |  ph }  =  { x }
3 nfab1 2221 . . . 4  |-  F/_ x { x  |  ph }
43nfeq1 2228 . . 3  |-  F/ x { x  |  ph }  =  { y }
5 sneq 3409 . . . 4  |-  ( x  =  y  ->  { x }  =  { y } )
65eqeq2d 2092 . . 3  |-  ( x  =  y  ->  ( { x  |  ph }  =  { x }  <->  { x  |  ph }  =  {
y } ) )
72, 4, 6cbvex 1679 . 2  |-  ( E. x { x  | 
ph }  =  {
x }  <->  E. y { x  |  ph }  =  { y } )
81, 7bitr4i 185 1  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284   E.wex 1421   E!weu 1941   {cab 2067   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sn 3404
This theorem is referenced by:  eusn  3466  args  4714
  Copyright terms: Public domain W3C validator