| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euabsn2 | Unicode version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| euabsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 1944 |
. 2
| |
| 2 | abeq1 2188 |
. . . 4
| |
| 3 | velsn 3415 |
. . . . . 6
| |
| 4 | 3 | bibi2i 225 |
. . . . 5
|
| 5 | 4 | albii 1399 |
. . . 4
|
| 6 | 2, 5 | bitri 182 |
. . 3
|
| 7 | 6 | exbii 1536 |
. 2
|
| 8 | 1, 7 | bitr4i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sn 3404 |
| This theorem is referenced by: euabsn 3462 reusn 3463 absneu 3464 uniintabim 3673 euabex 3980 nfvres 5227 eusvobj2 5518 |
| Copyright terms: Public domain | W3C validator |