| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusvnf | Unicode version | ||
| Description: Even if |
| Ref | Expression |
|---|---|
| eusvnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 1971 |
. 2
| |
| 2 | vex 2604 |
. . . . . . 7
| |
| 3 | nfcv 2219 |
. . . . . . . 8
| |
| 4 | nfcsb1v 2938 |
. . . . . . . . 9
| |
| 5 | 4 | nfeq2 2230 |
. . . . . . . 8
|
| 6 | csbeq1a 2916 |
. . . . . . . . 9
| |
| 7 | 6 | eqeq2d 2092 |
. . . . . . . 8
|
| 8 | 3, 5, 7 | spcgf 2680 |
. . . . . . 7
|
| 9 | 2, 8 | ax-mp 7 |
. . . . . 6
|
| 10 | vex 2604 |
. . . . . . 7
| |
| 11 | nfcv 2219 |
. . . . . . . 8
| |
| 12 | nfcsb1v 2938 |
. . . . . . . . 9
| |
| 13 | 12 | nfeq2 2230 |
. . . . . . . 8
|
| 14 | csbeq1a 2916 |
. . . . . . . . 9
| |
| 15 | 14 | eqeq2d 2092 |
. . . . . . . 8
|
| 16 | 11, 13, 15 | spcgf 2680 |
. . . . . . 7
|
| 17 | 10, 16 | ax-mp 7 |
. . . . . 6
|
| 18 | 9, 17 | eqtr3d 2115 |
. . . . 5
|
| 19 | 18 | alrimivv 1796 |
. . . 4
|
| 20 | sbnfc2 2962 |
. . . 4
| |
| 21 | 19, 20 | sylibr 132 |
. . 3
|
| 22 | 21 | exlimiv 1529 |
. 2
|
| 23 | 1, 22 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: eusvnfb 4204 eusv2i 4205 |
| Copyright terms: Public domain | W3C validator |