| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exdistrfor | Unicode version | ||
| Description: Distribution of
existential quantifiers, with a bound-variable
hypothesis saying that |
| Ref | Expression |
|---|---|
| exdistrfor.1 |
|
| Ref | Expression |
|---|---|
| exdistrfor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrfor.1 |
. 2
| |
| 2 | biidd 170 |
. . . . . 6
| |
| 3 | 2 | drex1 1719 |
. . . . 5
|
| 4 | 3 | drex2 1660 |
. . . 4
|
| 5 | hbe1 1424 |
. . . . . 6
| |
| 6 | 5 | 19.9h 1574 |
. . . . 5
|
| 7 | 19.8a 1522 |
. . . . . . 7
| |
| 8 | 7 | anim2i 334 |
. . . . . 6
|
| 9 | 8 | eximi 1531 |
. . . . 5
|
| 10 | 6, 9 | sylbi 119 |
. . . 4
|
| 11 | 4, 10 | syl6bir 162 |
. . 3
|
| 12 | ax-ial 1467 |
. . . 4
| |
| 13 | 19.40 1562 |
. . . . . 6
| |
| 14 | 19.9t 1573 |
. . . . . . . 8
| |
| 15 | 14 | biimpd 142 |
. . . . . . 7
|
| 16 | 15 | anim1d 329 |
. . . . . 6
|
| 17 | 13, 16 | syl5 32 |
. . . . 5
|
| 18 | 17 | sps 1470 |
. . . 4
|
| 19 | 12, 18 | eximdh 1542 |
. . 3
|
| 20 | 11, 19 | jaoi 668 |
. 2
|
| 21 | 1, 20 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: oprabidlem 5556 |
| Copyright terms: Public domain | W3C validator |