| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > drex1 | Unicode version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| drex1.1 |
|
| Ref | Expression |
|---|---|
| drex1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbae 1646 |
. . . 4
| |
| 2 | drex1.1 |
. . . . 5
| |
| 3 | ax-4 1440 |
. . . . . 6
| |
| 4 | 3 | biantrurd 299 |
. . . . 5
|
| 5 | 2, 4 | bitr2d 187 |
. . . 4
|
| 6 | 1, 5 | exbidh 1545 |
. . 3
|
| 7 | ax11e 1717 |
. . . 4
| |
| 8 | 7 | sps 1470 |
. . 3
|
| 9 | 6, 8 | sylbird 168 |
. 2
|
| 10 | hbae 1646 |
. . . 4
| |
| 11 | equcomi 1632 |
. . . . . . 7
| |
| 12 | 11 | sps 1470 |
. . . . . 6
|
| 13 | 12 | biantrurd 299 |
. . . . 5
|
| 14 | 13, 2 | bitr3d 188 |
. . . 4
|
| 15 | 10, 14 | exbidh 1545 |
. . 3
|
| 16 | ax11e 1717 |
. . . . 5
| |
| 17 | 16 | sps 1470 |
. . . 4
|
| 18 | 17 | alequcoms 1449 |
. . 3
|
| 19 | 15, 18 | sylbird 168 |
. 2
|
| 20 | 9, 19 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: drsb1 1720 exdistrfor 1721 copsexg 3999 |
| Copyright terms: Public domain | W3C validator |