ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsnrex Unicode version

Theorem exsnrex 3435
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )

Proof of Theorem exsnrex
StepHypRef Expression
1 vex 2604 . . . . . 6  |-  x  e. 
_V
21snid 3425 . . . . 5  |-  x  e. 
{ x }
3 eleq2 2142 . . . . 5  |-  ( M  =  { x }  ->  ( x  e.  M  <->  x  e.  { x }
) )
42, 3mpbiri 166 . . . 4  |-  ( M  =  { x }  ->  x  e.  M )
54pm4.71ri 384 . . 3  |-  ( M  =  { x }  <->  ( x  e.  M  /\  M  =  { x } ) )
65exbii 1536 . 2  |-  ( E. x  M  =  {
x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
7 df-rex 2354 . 2  |-  ( E. x  e.  M  M  =  { x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
86, 7bitr4i 185 1  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sn 3404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator