ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  find Unicode version

Theorem find 4340
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that  A is a set of natural numbers, zero belongs to 
A, and given any member of  A the member's successor also belongs to  A. The conclusion is that every natural number is in  A. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
find.1  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
Assertion
Ref Expression
find  |-  A  =  om
Distinct variable group:    x, A

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
21simp1i 947 . 2  |-  A  C_  om
3 3simpc 937 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
41, 3ax-mp 7 . . . 4  |-  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
5 df-ral 2353 . . . . . 6  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
6 alral 2409 . . . . . 6  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
75, 6sylbi 119 . . . . 5  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
87anim2i 334 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
94, 8ax-mp 7 . . 3  |-  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
10 peano5 4339 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
119, 10ax-mp 7 . 2  |-  om  C_  A
122, 11eqssi 3015 1  |-  A  =  om
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919   A.wal 1282    = wceq 1284    e. wcel 1433   A.wral 2348    C_ wss 2973   (/)c0 3251   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator