| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano5 | Unicode version | ||
| Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 4344. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| peano5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfom3 4333 |
. . 3
| |
| 2 | peano1 4335 |
. . . . . . . 8
| |
| 3 | elin 3155 |
. . . . . . . 8
| |
| 4 | 2, 3 | mpbiran 881 |
. . . . . . 7
|
| 5 | 4 | biimpri 131 |
. . . . . 6
|
| 6 | peano2 4336 |
. . . . . . . . . . . 12
| |
| 7 | 6 | adantr 270 |
. . . . . . . . . . 11
|
| 8 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 9 | pm3.31 258 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | jcad 301 |
. . . . . . . . 9
|
| 11 | 10 | alimi 1384 |
. . . . . . . 8
|
| 12 | df-ral 2353 |
. . . . . . . 8
| |
| 13 | elin 3155 |
. . . . . . . . . 10
| |
| 14 | elin 3155 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | imbi12i 237 |
. . . . . . . . 9
|
| 16 | 15 | albii 1399 |
. . . . . . . 8
|
| 17 | 11, 12, 16 | 3imtr4i 199 |
. . . . . . 7
|
| 18 | df-ral 2353 |
. . . . . . 7
| |
| 19 | 17, 18 | sylibr 132 |
. . . . . 6
|
| 20 | 5, 19 | anim12i 331 |
. . . . 5
|
| 21 | omex 4334 |
. . . . . . 7
| |
| 22 | 21 | inex1 3912 |
. . . . . 6
|
| 23 | eleq2 2142 |
. . . . . . 7
| |
| 24 | eleq2 2142 |
. . . . . . . 8
| |
| 25 | 24 | raleqbi1dv 2557 |
. . . . . . 7
|
| 26 | 23, 25 | anbi12d 456 |
. . . . . 6
|
| 27 | 22, 26 | elab 2738 |
. . . . 5
|
| 28 | 20, 27 | sylibr 132 |
. . . 4
|
| 29 | intss1 3651 |
. . . 4
| |
| 30 | 28, 29 | syl 14 |
. . 3
|
| 31 | 1, 30 | syl5eqss 3043 |
. 2
|
| 32 | ssid 3018 |
. . . 4
| |
| 33 | 32 | biantrur 297 |
. . 3
|
| 34 | ssin 3188 |
. . 3
| |
| 35 | 33, 34 | bitri 182 |
. 2
|
| 36 | 31, 35 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-suc 4126 df-iom 4332 |
| This theorem is referenced by: find 4340 finds 4341 finds2 4342 indpi 6532 |
| Copyright terms: Public domain | W3C validator |