| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findcard2sd | Unicode version | ||
| Description: Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
| Ref | Expression |
|---|---|
| findcard2sd.ch |
|
| findcard2sd.th |
|
| findcard2sd.ta |
|
| findcard2sd.et |
|
| findcard2sd.z |
|
| findcard2sd.i |
|
| findcard2sd.a |
|
| Ref | Expression |
|---|---|
| findcard2sd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3018 |
. 2
| |
| 2 | findcard2sd.a |
. . . 4
| |
| 3 | 2 | adantr 270 |
. . 3
|
| 4 | sseq1 3020 |
. . . . . 6
| |
| 5 | 4 | anbi2d 451 |
. . . . 5
|
| 6 | findcard2sd.ch |
. . . . 5
| |
| 7 | 5, 6 | imbi12d 232 |
. . . 4
|
| 8 | sseq1 3020 |
. . . . . 6
| |
| 9 | 8 | anbi2d 451 |
. . . . 5
|
| 10 | findcard2sd.th |
. . . . 5
| |
| 11 | 9, 10 | imbi12d 232 |
. . . 4
|
| 12 | sseq1 3020 |
. . . . . 6
| |
| 13 | 12 | anbi2d 451 |
. . . . 5
|
| 14 | findcard2sd.ta |
. . . . 5
| |
| 15 | 13, 14 | imbi12d 232 |
. . . 4
|
| 16 | sseq1 3020 |
. . . . . 6
| |
| 17 | 16 | anbi2d 451 |
. . . . 5
|
| 18 | findcard2sd.et |
. . . . 5
| |
| 19 | 17, 18 | imbi12d 232 |
. . . 4
|
| 20 | findcard2sd.z |
. . . . 5
| |
| 21 | 20 | adantr 270 |
. . . 4
|
| 22 | simprl 497 |
. . . . . . . 8
| |
| 23 | simprr 498 |
. . . . . . . . 9
| |
| 24 | 23 | unssad 3149 |
. . . . . . . 8
|
| 25 | 22, 24 | jca 300 |
. . . . . . 7
|
| 26 | simpll 495 |
. . . . . . . 8
| |
| 27 | id 19 |
. . . . . . . . . . 11
| |
| 28 | vsnid 3426 |
. . . . . . . . . . . 12
| |
| 29 | elun2 3140 |
. . . . . . . . . . . 12
| |
| 30 | 28, 29 | mp1i 10 |
. . . . . . . . . . 11
|
| 31 | 27, 30 | sseldd 3000 |
. . . . . . . . . 10
|
| 32 | 31 | ad2antll 474 |
. . . . . . . . 9
|
| 33 | simplr 496 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eldifd 2983 |
. . . . . . . 8
|
| 35 | findcard2sd.i |
. . . . . . . 8
| |
| 36 | 22, 26, 24, 34, 35 | syl22anc 1170 |
. . . . . . 7
|
| 37 | 25, 36 | embantd 55 |
. . . . . 6
|
| 38 | 37 | ex 113 |
. . . . 5
|
| 39 | 38 | com23 77 |
. . . 4
|
| 40 | 7, 11, 15, 19, 21, 39 | findcard2s 6374 |
. . 3
|
| 41 | 3, 40 | mpcom 36 |
. 2
|
| 42 | 1, 41 | mpan2 415 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-er 6129 df-en 6245 df-fin 6247 |
| This theorem is referenced by: fnfi 6388 |
| Copyright terms: Public domain | W3C validator |