ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftval Unicode version

Theorem fliftval 5460
Description: The value of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
fliftval.4  |-  ( x  =  Y  ->  A  =  C )
fliftval.5  |-  ( x  =  Y  ->  B  =  D )
fliftval.6  |-  ( ph  ->  Fun  F )
Assertion
Ref Expression
fliftval  |-  ( (
ph  /\  Y  e.  X )  ->  ( F `  C )  =  D )
Distinct variable groups:    x, C    x, R    x, Y    x, D    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftval
StepHypRef Expression
1 fliftval.6 . . 3  |-  ( ph  ->  Fun  F )
21adantr 270 . 2  |-  ( (
ph  /\  Y  e.  X )  ->  Fun  F )
3 simpr 108 . . . 4  |-  ( (
ph  /\  Y  e.  X )  ->  Y  e.  X )
4 eqidd 2082 . . . . 5  |-  ( ph  ->  D  =  D )
5 eqidd 2082 . . . . 5  |-  ( Y  e.  X  ->  C  =  C )
64, 5anim12ci 332 . . . 4  |-  ( (
ph  /\  Y  e.  X )  ->  ( C  =  C  /\  D  =  D )
)
7 fliftval.4 . . . . . . 7  |-  ( x  =  Y  ->  A  =  C )
87eqeq2d 2092 . . . . . 6  |-  ( x  =  Y  ->  ( C  =  A  <->  C  =  C ) )
9 fliftval.5 . . . . . . 7  |-  ( x  =  Y  ->  B  =  D )
109eqeq2d 2092 . . . . . 6  |-  ( x  =  Y  ->  ( D  =  B  <->  D  =  D ) )
118, 10anbi12d 456 . . . . 5  |-  ( x  =  Y  ->  (
( C  =  A  /\  D  =  B )  <->  ( C  =  C  /\  D  =  D ) ) )
1211rspcev 2701 . . . 4  |-  ( ( Y  e.  X  /\  ( C  =  C  /\  D  =  D
) )  ->  E. x  e.  X  ( C  =  A  /\  D  =  B ) )
133, 6, 12syl2anc 403 . . 3  |-  ( (
ph  /\  Y  e.  X )  ->  E. x  e.  X  ( C  =  A  /\  D  =  B ) )
14 flift.1 . . . . 5  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
15 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
16 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
1714, 15, 16fliftel 5453 . . . 4  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
1817adantr 270 . . 3  |-  ( (
ph  /\  Y  e.  X )  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B ) ) )
1913, 18mpbird 165 . 2  |-  ( (
ph  /\  Y  e.  X )  ->  C F D )
20 funbrfv 5233 . 2  |-  ( Fun 
F  ->  ( C F D  ->  ( F `
 C )  =  D ) )
212, 19, 20sylc 61 1  |-  ( (
ph  /\  Y  e.  X )  ->  ( F `  C )  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E.wrex 2349   <.cop 3401   class class class wbr 3785    |-> cmpt 3839   ran crn 4364   Fun wfun 4916   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fv 4930
This theorem is referenced by:  qliftval  6215
  Copyright terms: Public domain W3C validator