![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4925 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-fn 4925 |
This theorem is referenced by: fnrel 5017 funfni 5019 fnco 5027 fnssresb 5031 ffun 5068 f1fun 5114 f1ofun 5148 fnbrfvb 5235 fvelimab 5250 fvun1 5260 elpreima 5307 respreima 5316 fconst3m 5401 fnfvima 5414 fnunirn 5427 f1eqcocnv 5451 fnexALT 5760 tfrlem4 5952 tfrlem5 5953 frecsuclem3 6013 fndmeng 6312 frecuzrdgcl 9415 frecuzrdg0 9416 frecuzrdgsuc 9417 shftfn 9712 |
Copyright terms: Public domain | W3C validator |