ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb Unicode version

Theorem fnbrfvb 5235
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )

Proof of Theorem fnbrfvb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2081 . . . 4  |-  ( F `
 B )  =  ( F `  B
)
2 funfvex 5212 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  _V )
32funfni 5019 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  _V )
4 eqeq2 2090 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  (
( F `  B
)  =  x  <->  ( F `  B )  =  ( F `  B ) ) )
5 breq2 3789 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  ( B F x  <->  B F
( F `  B
) ) )
64, 5bibi12d 233 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  (
( ( F `  B )  =  x  <-> 
B F x )  <-> 
( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) ) )
76imbi2d 228 . . . . . 6  |-  ( x  =  ( F `  B )  ->  (
( ( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  x  <->  B F x ) )  <->  ( ( F  Fn  A  /\  B  e.  A )  ->  (
( F `  B
)  =  ( F `
 B )  <->  B F
( F `  B
) ) ) ) )
8 fneu 5023 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! x  B F x )
9 tz6.12c 5224 . . . . . . 7  |-  ( E! x  B F x  ->  ( ( F `
 B )  =  x  <->  B F x ) )
108, 9syl 14 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  x  <-> 
B F x ) )
117, 10vtoclg 2658 . . . . 5  |-  ( ( F `  B )  e.  _V  ->  (
( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  ( F `  B )  <->  B F
( F `  B
) ) ) )
123, 11mpcom 36 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) )
131, 12mpbii 146 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B F ( F `
 B ) )
14 breq2 3789 . . 3  |-  ( ( F `  B )  =  C  ->  ( B F ( F `  B )  <->  B F C ) )
1513, 14syl5ibcom 153 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  ->  B F C ) )
16 fnfun 5016 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
17 funbrfv 5233 . . . 4  |-  ( Fun 
F  ->  ( B F C  ->  ( F `
 B )  =  C ) )
1816, 17syl 14 . . 3  |-  ( F  Fn  A  ->  ( B F C  ->  ( F `  B )  =  C ) )
1918adantr 270 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( B F C  ->  ( F `  B )  =  C ) )
2015, 19impbid 127 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E!weu 1941   _Vcvv 2601   class class class wbr 3785   Fun wfun 4916    Fn wfn 4917   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  fnopfvb  5236  funbrfvb  5237  dffn5im  5240  fnsnfv  5253  fndmdif  5293  dffo4  5336  dff13  5428  isoini  5477  1stconst  5862  2ndconst  5863
  Copyright terms: Public domain W3C validator