ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun1 Unicode version

Theorem fvun1 5260
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5016 . . 3  |-  ( F  Fn  A  ->  Fun  F )
213ad2ant1 959 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  F )
3 fnfun 5016 . . 3  |-  ( G  Fn  B  ->  Fun  G )
433ad2ant2 960 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  G )
5 fndm 5018 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
6 fndm 5018 . . . . . . 7  |-  ( G  Fn  B  ->  dom  G  =  B )
75, 6ineqan12d 3169 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
87eqeq1d 2089 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( dom  F  i^i  dom  G )  =  (/) 
<->  ( A  i^i  B
)  =  (/) ) )
98biimprd 156 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( dom  F  i^i  dom  G
)  =  (/) ) )
109adantrd 273 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( ( A  i^i  B )  =  (/)  /\  X  e.  A
)  ->  ( dom  F  i^i  dom  G )  =  (/) ) )
11103impia 1135 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( dom  F  i^i  dom 
G )  =  (/) )
12 simp3r 967 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  X  e.  A )
135eleq2d 2148 . . . 4  |-  ( F  Fn  A  ->  ( X  e.  dom  F  <->  X  e.  A ) )
14133ad2ant1 959 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( X  e.  dom  F  <-> 
X  e.  A ) )
1512, 14mpbird 165 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  X  e.  dom  F )
16 funun 4964 . . . . . . 7  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
17 ssun1 3135 . . . . . . . . 9  |-  F  C_  ( F  u.  G
)
18 dmss 4552 . . . . . . . . 9  |-  ( F 
C_  ( F  u.  G )  ->  dom  F 
C_  dom  ( F  u.  G ) )
1917, 18ax-mp 7 . . . . . . . 8  |-  dom  F  C_ 
dom  ( F  u.  G )
2019sseli 2995 . . . . . . 7  |-  ( X  e.  dom  F  ->  X  e.  dom  ( F  u.  G ) )
2116, 20anim12i 331 . . . . . 6  |-  ( ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G )  =  (/) )  /\  X  e.  dom  F )  ->  ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G
) ) )
2221anasss 391 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  (
( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
) )  ->  ( Fun  ( F  u.  G
)  /\  X  e.  dom  ( F  u.  G
) ) )
23223impa 1133 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G
) ) )
24 funfvdm 5257 . . . 4  |-  ( ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G ) )  -> 
( ( F  u.  G ) `  X
)  =  U. (
( F  u.  G
) " { X } ) )
2523, 24syl 14 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) `  X )  =  U. ( ( F  u.  G ) " { X } ) )
26 imaundir 4757 . . . . . 6  |-  ( ( F  u.  G )
" { X }
)  =  ( ( F " { X } )  u.  ( G " { X }
) )
2726a1i 9 . . . . 5  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) " { X } )  =  ( ( F " { X } )  u.  ( G " { X } ) ) )
2827unieqd 3612 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F  u.  G ) " { X } )  = 
U. ( ( F
" { X }
)  u.  ( G
" { X }
) ) )
29 disjel 3298 . . . . . . . . 9  |-  ( ( ( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
)  ->  -.  X  e.  dom  G )
30 ndmima 4722 . . . . . . . . 9  |-  ( -.  X  e.  dom  G  ->  ( G " { X } )  =  (/) )
3129, 30syl 14 . . . . . . . 8  |-  ( ( ( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
)  ->  ( G " { X } )  =  (/) )
32313ad2ant3 961 . . . . . . 7  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( G " { X } )  =  (/) )
3332uneq2d 3126 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  ( ( F " { X } )  u.  (/) ) )
34 un0 3278 . . . . . 6  |-  ( ( F " { X } )  u.  (/) )  =  ( F " { X } )
3533, 34syl6eq 2129 . . . . 5  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  ( F " { X } ) )
3635unieqd 3612 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  U. ( F " { X } ) )
3728, 36eqtrd 2113 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F  u.  G ) " { X } )  = 
U. ( F " { X } ) )
38 funfvdm 5257 . . . . . 6  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( F `  X
)  =  U. ( F " { X }
) )
3938eqcomd 2086 . . . . 5  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  U. ( F " { X } )  =  ( F `  X ) )
4039adantrl 461 . . . 4  |-  ( ( Fun  F  /\  (
( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
) )  ->  U. ( F " { X }
)  =  ( F `
 X ) )
41403adant2 957 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( F " { X } )  =  ( F `  X
) )
4225, 37, 413eqtrd 2117 . 2  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) `  X )  =  ( F `  X ) )
432, 4, 11, 15, 42syl112anc 1173 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433    u. cun 2971    i^i cin 2972    C_ wss 2973   (/)c0 3251   {csn 3398   U.cuni 3601   dom cdm 4363   "cima 4366   Fun wfun 4916    Fn wfn 4917   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  fvun2  5261
  Copyright terms: Public domain W3C validator