ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuc Unicode version

Theorem frecuzrdgsuc 9417
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9401 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 28-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
uzrdg.s  |-  ( ph  ->  S  e.  V )
uzrdg.a  |-  ( ph  ->  A  e.  S )
uzrdg.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
uzrdg.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgfn.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdgsuc  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
 B ) ) )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)    V( x, y)

Proof of Theorem frecuzrdgsuc
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
21adantr 270 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
3 frec2uz.2 . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
4 uzrdg.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
54adantr 270 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  S  e.  V )
6 uzrdg.a . . . . . . 7  |-  ( ph  ->  A  e.  S )
76adantr 270 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
8 uzrdg.f . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
98adantlr 460 . . . . . 6  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
10 uzrdg.2 . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
11 peano2uz 8671 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
1211adantl 271 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
132, 3, 5, 7, 9, 10, 12frecuzrdglem 9413 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  ran  R )
14 frecuzrdgfn.3 . . . . . 6  |-  ( ph  ->  T  =  ran  R
)
1514adantr 270 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  T  =  ran  R )
1613, 15eleqtrrd 2158 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  T
)
171, 3, 4, 6, 8, 10, 14frecuzrdgfn 9414 . . . . . . 7  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
18 fnfun 5016 . . . . . . 7  |-  ( T  Fn  ( ZZ>= `  C
)  ->  Fun  T )
1917, 18syl 14 . . . . . 6  |-  ( ph  ->  Fun  T )
20 funopfv 5234 . . . . . 6  |-  ( Fun 
T  ->  ( <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  T  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
2119, 20syl 14 . . . . 5  |-  ( ph  ->  ( <. ( B  + 
1 ) ,  ( 2nd `  ( R `
 ( `' G `  ( B  +  1 ) ) ) )
>.  e.  T  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
2221adantr 270 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  T  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
2316, 22mpd 13 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `
 ( `' G `  ( B  +  1 ) ) ) ) )
241, 3frec2uzf1od 9408 . . . . . . . . 9  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
25 f1ocnvdm 5441 . . . . . . . . 9  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
2624, 25sylan 277 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  B )  e.  om )
272, 3, 26frec2uzsucd 9403 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  suc  ( `' G `  B ) )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
28 f1ocnvfv2 5438 . . . . . . . . 9  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
2924, 28sylan 277 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  B ) )  =  B )
3029oveq1d 5547 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
)  +  1 )  =  ( B  + 
1 ) )
3127, 30eqtrd 2113 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 ) )
32 peano2 4336 . . . . . . . 8  |-  ( ( `' G `  B )  e.  om  ->  suc  ( `' G `  B )  e.  om )
3326, 32syl 14 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  suc  ( `' G `  B )  e.  om )
34 f1ocnvfv 5439 . . . . . . . 8  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  suc  ( `' G `  B )  e.  om )  ->  ( ( G `
 suc  ( `' G `  B )
)  =  ( B  +  1 )  -> 
( `' G `  ( B  +  1
) )  =  suc  ( `' G `  B ) ) )
3524, 34sylan 277 . . . . . . 7  |-  ( (
ph  /\  suc  ( `' G `  B )  e.  om )  -> 
( ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 )  ->  ( `' G `  ( B  +  1 ) )  =  suc  ( `' G `  B ) ) )
3633, 35syldan 276 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 )  -> 
( `' G `  ( B  +  1
) )  =  suc  ( `' G `  B ) ) )
3731, 36mpd 13 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  ( B  +  1 ) )  =  suc  ( `' G `  B ) )
3837fveq2d 5202 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  ( B  +  1
) ) )  =  ( R `  suc  ( `' G `  B ) ) )
3938fveq2d 5202 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) )  =  ( 2nd `  ( R `
 suc  ( `' G `  B )
) ) )
4023, 39eqtrd 2113 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( 2nd `  ( R `
 suc  ( `' G `  B )
) ) )
41 zex 8360 . . . . . . . . . . 11  |-  ZZ  e.  _V
42 uzssz 8638 . . . . . . . . . . 11  |-  ( ZZ>= `  C )  C_  ZZ
4341, 42ssexi 3916 . . . . . . . . . 10  |-  ( ZZ>= `  C )  e.  _V
44 mpt2exga 5855 . . . . . . . . . 10  |-  ( ( ( ZZ>= `  C )  e.  _V  /\  S  e.  V )  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
4543, 44mpan 414 . . . . . . . . 9  |-  ( S  e.  V  ->  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V )
46 vex 2604 . . . . . . . . . 10  |-  z  e. 
_V
47 fvexg 5214 . . . . . . . . . 10  |-  ( ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
)  e.  _V  /\  z  e.  _V )  ->  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
4846, 47mpan2 415 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  e.  _V  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
495, 45, 483syl 17 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V )
5049alrimiv 1795 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A. z
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  _V )
51 opelxp 4392 . . . . . . . . 9  |-  ( <. C ,  A >.  e.  ( ZZ  X.  S
)  <->  ( C  e.  ZZ  /\  A  e.  S ) )
521, 6, 51sylanbrc 408 . . . . . . . 8  |-  ( ph  -> 
<. C ,  A >.  e.  ( ZZ  X.  S
) )
5352adantr 270 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. C ,  A >.  e.  ( ZZ 
X.  S ) )
54 frecsuc 6014 . . . . . . 7  |-  ( ( A. z ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  _V  /\ 
<. C ,  A >.  e.  ( ZZ  X.  S
)  /\  ( `' G `  B )  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) ) ) )
5550, 53, 26, 54syl3anc 1169 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) ) ) )
5610fveq1i 5199 . . . . . 6  |-  ( R `
 suc  ( `' G `  B )
)  =  (frec ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )
5710fveq1i 5199 . . . . . . 7  |-  ( R `
 ( `' G `  B ) )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) )
5857fveq2i 5201 . . . . . 6  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  ( `' G `  B ) ) )
5955, 56, 583eqtr4g 2138 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) ) )
602, 3, 5, 7, 9, 10, 26frec2uzrdg 9411 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  = 
<. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
6160fveq2d 5202 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
)
62 df-ov 5535 . . . . . 6  |-  ( ( G `  ( `' G `  B ) ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
6361, 62syl6eqr 2131 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( G `  ( `' G `  B ) ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
642, 3, 26frec2uzuzd 9404 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  B ) )  e.  ( ZZ>= `  C )
)
652, 3, 5, 7, 9, 10frecuzrdgrrn 9410 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( `' G `  B )  e.  om )  ->  ( R `  ( `' G `  B )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
6626, 65mpdan 412 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
67 xp2nd 5813 . . . . . . 7  |-  ( ( R `  ( `' G `  B ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
6866, 67syl 14 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
6930, 12eqeltrd 2155 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
)  +  1 )  e.  ( ZZ>= `  C
) )
709caovclg 5673 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( z  e.  ( ZZ>= `  C )  /\  w  e.  S
) )  ->  (
z F w )  e.  S )
7170, 64, 68caovcld 5674 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S )
72 opexg 3983 . . . . . . 7  |-  ( ( ( ( G `  ( `' G `  B ) )  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S )  ->  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  _V )
7369, 71, 72syl2anc 403 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  _V )
74 oveq1 5539 . . . . . . . 8  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  ( z  +  1 )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
75 oveq1 5539 . . . . . . . 8  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  ( z F w )  =  ( ( G `  ( `' G `  B ) ) F w ) )
7674, 75opeq12d 3578 . . . . . . 7  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  <. ( z  +  1 ) ,  ( z F w ) >.  =  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F w ) >. )
77 oveq2 5540 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  (
( G `  ( `' G `  B ) ) F w )  =  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
7877opeq2d 3577 . . . . . . 7  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F w ) >.  =  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
79 oveq1 5539 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
80 oveq1 5539 . . . . . . . . 9  |-  ( x  =  z  ->  (
x F y )  =  ( z F y ) )
8179, 80opeq12d 3578 . . . . . . . 8  |-  ( x  =  z  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( z  +  1 ) ,  ( z F y ) >. )
82 oveq2 5540 . . . . . . . . 9  |-  ( y  =  w  ->  (
z F y )  =  ( z F w ) )
8382opeq2d 3577 . . . . . . . 8  |-  ( y  =  w  ->  <. (
z  +  1 ) ,  ( z F y ) >.  =  <. ( z  +  1 ) ,  ( z F w ) >. )
8481, 83cbvmpt2v 5604 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
z  e.  ( ZZ>= `  C ) ,  w  e.  S  |->  <. (
z  +  1 ) ,  ( z F w ) >. )
8576, 78, 84ovmpt2g 5655 . . . . . 6  |-  ( ( ( G `  ( `' G `  B ) )  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S  /\  <. ( ( G `
 ( `' G `  B ) )  +  1 ) ,  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) >.  e.  _V )  ->  (
( G `  ( `' G `  B ) ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
8664, 68, 73, 85syl3anc 1169 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
8759, 63, 863eqtrd 2117 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
8887fveq2d 5202 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( 2nd `  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
) )
89 op2ndg 5798 . . . 4  |-  ( ( ( ( G `  ( `' G `  B ) )  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S )  ->  ( 2nd `  <. ( ( G `
 ( `' G `  B ) )  +  1 ) ,  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) >.
)  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9069, 71, 89syl2anc 403 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd ` 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9188, 90eqtrd 2113 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
92 simpr 108 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  B  e.  ( ZZ>= `  C )
)
932, 3, 5, 7, 9, 10, 92frecuzrdglem 9413 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  ran  R )
9493, 15eleqtrrd 2158 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T
)
95 funopfv 5234 . . . . . . 7  |-  ( Fun 
T  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T  ->  ( T `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9619, 95syl 14 . . . . . 6  |-  ( ph  ->  ( <. B ,  ( 2nd `  ( R `
 ( `' G `  B ) ) )
>.  e.  T  ->  ( T `  B )  =  ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
9796adantr 270 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  T  ->  ( T `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
9894, 97mpd 13 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  B )  =  ( 2nd `  ( R `
 ( `' G `  B ) ) ) )
9998eqcomd 2086 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  =  ( T `  B ) )
10029, 99oveq12d 5550 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  =  ( B F ( T `  B ) ) )
10140, 91, 1003eqtrd 2117 1  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284    e. wcel 1433   _Vcvv 2601   <.cop 3401    |-> cmpt 3839   suc csuc 4120   omcom 4331    X. cxp 4361   `'ccnv 4362   ran crn 4364   Fun wfun 4916    Fn wfn 4917   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   2ndc2nd 5786  freccfrec 6000   1c1 6982    + caddc 6984   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  iseqp1  9445
  Copyright terms: Public domain W3C validator