ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecabex Unicode version

Theorem frecabex 6007
Description: The class abstraction from df-frec 6001 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
Hypotheses
Ref Expression
frecabex.sex  |-  ( ph  ->  S  e.  V )
frecabex.fvex  |-  ( ph  ->  A. y ( F `
 y )  e. 
_V )
frecabex.aex  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
frecabex  |-  ( ph  ->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
Distinct variable groups:    x, A    x, F    x, S, y    ph, m    x, m, y    y, F
Allowed substitution hints:    ph( x, y)    A( y, m)    S( m)    F( m)    V( x, y, m)    W( x, y, m)

Proof of Theorem frecabex
StepHypRef Expression
1 omex 4334 . . . 4  |-  om  e.  _V
2 simpr 108 . . . . . . 7  |-  ( ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  ->  x  e.  ( F `  ( S `
 m ) ) )
32abssi 3069 . . . . . 6  |-  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) ) }  C_  ( F `  ( S `
 m ) )
4 frecabex.sex . . . . . . . 8  |-  ( ph  ->  S  e.  V )
5 vex 2604 . . . . . . . 8  |-  m  e. 
_V
6 fvexg 5214 . . . . . . . 8  |-  ( ( S  e.  V  /\  m  e.  _V )  ->  ( S `  m
)  e.  _V )
74, 5, 6sylancl 404 . . . . . . 7  |-  ( ph  ->  ( S `  m
)  e.  _V )
8 frecabex.fvex . . . . . . 7  |-  ( ph  ->  A. y ( F `
 y )  e. 
_V )
9 fveq2 5198 . . . . . . . . 9  |-  ( y  =  ( S `  m )  ->  ( F `  y )  =  ( F `  ( S `  m ) ) )
109eleq1d 2147 . . . . . . . 8  |-  ( y  =  ( S `  m )  ->  (
( F `  y
)  e.  _V  <->  ( F `  ( S `  m
) )  e.  _V ) )
1110spcgv 2685 . . . . . . 7  |-  ( ( S `  m )  e.  _V  ->  ( A. y ( F `  y )  e.  _V  ->  ( F `  ( S `  m )
)  e.  _V )
)
127, 8, 11sylc 61 . . . . . 6  |-  ( ph  ->  ( F `  ( S `  m )
)  e.  _V )
13 ssexg 3917 . . . . . 6  |-  ( ( { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  C_  ( F `  ( S `  m ) )  /\  ( F `  ( S `
 m ) )  e.  _V )  ->  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
143, 12, 13sylancr 405 . . . . 5  |-  ( ph  ->  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  e.  _V )
1514ralrimivw 2435 . . . 4  |-  ( ph  ->  A. m  e.  om  { x  |  ( dom 
S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
16 abrexex2g 5767 . . . 4  |-  ( ( om  e.  _V  /\  A. m  e.  om  {
x  |  ( dom 
S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )  ->  { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
171, 15, 16sylancr 405 . . 3  |-  ( ph  ->  { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
18 simpr 108 . . . . 5  |-  ( ( dom  S  =  (/)  /\  x  e.  A )  ->  x  e.  A
)
1918abssi 3069 . . . 4  |-  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  C_  A
20 frecabex.aex . . . 4  |-  ( ph  ->  A  e.  W )
21 ssexg 3917 . . . 4  |-  ( ( { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  C_  A  /\  A  e.  W )  ->  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
2219, 20, 21sylancr 405 . . 3  |-  ( ph  ->  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
2317, 22jca 300 . 2  |-  ( ph  ->  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  e.  _V  /\ 
{ x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
)
24 unexb 4195 . . 3  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V  /\  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) }  e.  _V )  <->  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  u.  {
x  |  ( dom 
S  =  (/)  /\  x  e.  A ) } )  e.  _V )
25 unab 3231 . . . 4  |-  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) ) }  u.  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) } )  =  { x  |  ( E. m  e. 
om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) )  \/  ( dom  S  =  (/)  /\  x  e.  A ) ) }
2625eleq1i 2144 . . 3  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  u.  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) } )  e.  _V  <->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) )  \/  ( dom  S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
2724, 26bitri 182 . 2  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V  /\  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) }  e.  _V )  <->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
2823, 27sylib 120 1  |-  ( ph  ->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   _Vcvv 2601    u. cun 2971    C_ wss 2973   (/)c0 3251   suc csuc 4120   omcom 4331   dom cdm 4363   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by:  frectfr  6008  frecsuclem3  6013
  Copyright terms: Public domain W3C validator