| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ftpg | Unicode version | ||
| Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| ftpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 935 |
. . . 4
| |
| 2 | 3simpa 935 |
. . . 4
| |
| 3 | simp1 938 |
. . . 4
| |
| 4 | fprg 5367 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3an 1211 |
. . 3
|
| 6 | eqidd 2082 |
. . . 4
| |
| 7 | simp3 940 |
. . . . . . 7
| |
| 8 | simp3 940 |
. . . . . . 7
| |
| 9 | 7, 8 | anim12i 331 |
. . . . . 6
|
| 10 | 9 | 3adant3 958 |
. . . . 5
|
| 11 | fsng 5357 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | 6, 12 | mpbird 165 |
. . 3
|
| 14 | df-ne 2246 |
. . . . . . 7
| |
| 15 | df-ne 2246 |
. . . . . . 7
| |
| 16 | elpri 3421 |
. . . . . . . . . 10
| |
| 17 | eqcom 2083 |
. . . . . . . . . . 11
| |
| 18 | eqcom 2083 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | orbi12i 713 |
. . . . . . . . . 10
|
| 20 | 16, 19 | sylib 120 |
. . . . . . . . 9
|
| 21 | oranim 840 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | con2i 589 |
. . . . . . 7
|
| 24 | 14, 15, 23 | syl2anb 285 |
. . . . . 6
|
| 25 | 24 | 3adant1 956 |
. . . . 5
|
| 26 | 25 | 3ad2ant3 961 |
. . . 4
|
| 27 | disjsn 3454 |
. . . 4
| |
| 28 | 26, 27 | sylibr 132 |
. . 3
|
| 29 | fun 5083 |
. . 3
| |
| 30 | 5, 13, 28, 29 | syl21anc 1168 |
. 2
|
| 31 | df-tp 3406 |
. . . 4
| |
| 32 | 31 | feq1i 5059 |
. . 3
|
| 33 | df-tp 3406 |
. . . 4
| |
| 34 | df-tp 3406 |
. . . 4
| |
| 35 | 33, 34 | feq23i 5061 |
. . 3
|
| 36 | 32, 35 | bitri 182 |
. 2
|
| 37 | 30, 36 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-tp 3406 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: ftp 5369 |
| Copyright terms: Public domain | W3C validator |