ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftpg Unicode version

Theorem ftpg 5368
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C } )

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 935 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 935 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 938 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 fprg 5367 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }
)
51, 2, 3, 4syl3an 1211 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B } )
6 eqidd 2082 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. Z ,  C >. }  =  { <. Z ,  C >. } )
7 simp3 940 . . . . . . 7  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  Z  e.  W )
8 simp3 940 . . . . . . 7  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  C  e.  H )
97, 8anim12i 331 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H ) )  -> 
( Z  e.  W  /\  C  e.  H
) )
1093adant3 958 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( Z  e.  W  /\  C  e.  H
) )
11 fsng 5357 . . . . 5  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  ( { <. Z ,  C >. } : { Z } --> { C }  <->  {
<. Z ,  C >. }  =  { <. Z ,  C >. } ) )
1210, 11syl 14 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { <. Z ,  C >. } : { Z } --> { C }  <->  {
<. Z ,  C >. }  =  { <. Z ,  C >. } ) )
136, 12mpbird 165 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. Z ,  C >. } : { Z }
--> { C } )
14 df-ne 2246 . . . . . . 7  |-  ( X  =/=  Z  <->  -.  X  =  Z )
15 df-ne 2246 . . . . . . 7  |-  ( Y  =/=  Z  <->  -.  Y  =  Z )
16 elpri 3421 . . . . . . . . . 10  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 eqcom 2083 . . . . . . . . . . 11  |-  ( Z  =  X  <->  X  =  Z )
18 eqcom 2083 . . . . . . . . . . 11  |-  ( Z  =  Y  <->  Y  =  Z )
1917, 18orbi12i 713 . . . . . . . . . 10  |-  ( ( Z  =  X  \/  Z  =  Y )  <->  ( X  =  Z  \/  Y  =  Z )
)
2016, 19sylib 120 . . . . . . . . 9  |-  ( Z  e.  { X ,  Y }  ->  ( X  =  Z  \/  Y  =  Z ) )
21 oranim 840 . . . . . . . . 9  |-  ( ( X  =  Z  \/  Y  =  Z )  ->  -.  ( -.  X  =  Z  /\  -.  Y  =  Z ) )
2220, 21syl 14 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  -.  ( -.  X  =  Z  /\  -.  Y  =  Z ) )
2322con2i 589 . . . . . . 7  |-  ( ( -.  X  =  Z  /\  -.  Y  =  Z )  ->  -.  Z  e.  { X ,  Y } )
2414, 15, 23syl2anb 285 . . . . . 6  |-  ( ( X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
25243adant1 956 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
26253ad2ant3 961 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  -.  Z  e.  { X ,  Y } )
27 disjsn 3454 . . . 4  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
2826, 27sylibr 132 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
29 fun 5083 . . 3  |-  ( ( ( { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }  /\  { <. Z ,  C >. } : { Z }
--> { C } )  /\  ( { X ,  Y }  i^i  { Z } )  =  (/) )  ->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
305, 13, 28, 29syl21anc 1168 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
31 df-tp 3406 . . . 4  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3231feq1i 5059 . . 3  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : { X ,  Y ,  Z } --> { A ,  B ,  C } )
33 df-tp 3406 . . . 4  |-  { X ,  Y ,  Z }  =  ( { X ,  Y }  u.  { Z } )
34 df-tp 3406 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
3533, 34feq23i 5061 . . 3  |-  ( ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
3632, 35bitri 182 . 2  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
3730, 36sylibr 132 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399   {ctp 3400   <.cop 3401   -->wf 4918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929
This theorem is referenced by:  ftp  5369
  Copyright terms: Public domain W3C validator