| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun11 | Unicode version | ||
| Description: Two ways of stating that
|
| Ref | Expression |
|---|---|
| fun11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 380 |
. . . . . . . 8
| |
| 2 | 1 | imbi2i 224 |
. . . . . . 7
|
| 3 | pm4.76 568 |
. . . . . . 7
| |
| 4 | bi2.04 246 |
. . . . . . . 8
| |
| 5 | bi2.04 246 |
. . . . . . . 8
| |
| 6 | 4, 5 | anbi12i 447 |
. . . . . . 7
|
| 7 | 2, 3, 6 | 3bitr2i 206 |
. . . . . 6
|
| 8 | 7 | 2albii 1400 |
. . . . 5
|
| 9 | 19.26-2 1411 |
. . . . 5
| |
| 10 | alcom 1407 |
. . . . . . 7
| |
| 11 | nfv 1461 |
. . . . . . . . 9
| |
| 12 | breq1 3788 |
. . . . . . . . . . 11
| |
| 13 | 12 | anbi1d 452 |
. . . . . . . . . 10
|
| 14 | 13 | imbi1d 229 |
. . . . . . . . 9
|
| 15 | 11, 14 | equsal 1655 |
. . . . . . . 8
|
| 16 | 15 | albii 1399 |
. . . . . . 7
|
| 17 | 10, 16 | bitri 182 |
. . . . . 6
|
| 18 | nfv 1461 |
. . . . . . . 8
| |
| 19 | breq2 3789 |
. . . . . . . . . 10
| |
| 20 | 19 | anbi1d 452 |
. . . . . . . . 9
|
| 21 | 20 | imbi1d 229 |
. . . . . . . 8
|
| 22 | 18, 21 | equsal 1655 |
. . . . . . 7
|
| 23 | 22 | albii 1399 |
. . . . . 6
|
| 24 | 17, 23 | anbi12i 447 |
. . . . 5
|
| 25 | 8, 9, 24 | 3bitri 204 |
. . . 4
|
| 26 | 25 | 2albii 1400 |
. . 3
|
| 27 | 19.26-2 1411 |
. . 3
| |
| 28 | 26, 27 | bitr2i 183 |
. 2
|
| 29 | fun2cnv 4983 |
. . . 4
| |
| 30 | breq2 3789 |
. . . . . 6
| |
| 31 | 30 | mo4 2002 |
. . . . 5
|
| 32 | 31 | albii 1399 |
. . . 4
|
| 33 | alcom 1407 |
. . . . 5
| |
| 34 | 33 | albii 1399 |
. . . 4
|
| 35 | 29, 32, 34 | 3bitri 204 |
. . 3
|
| 36 | funcnv2 4979 |
. . . 4
| |
| 37 | breq1 3788 |
. . . . . 6
| |
| 38 | 37 | mo4 2002 |
. . . . 5
|
| 39 | 38 | albii 1399 |
. . . 4
|
| 40 | alcom 1407 |
. . . . . 6
| |
| 41 | 40 | albii 1399 |
. . . . 5
|
| 42 | alcom 1407 |
. . . . 5
| |
| 43 | 41, 42 | bitri 182 |
. . . 4
|
| 44 | 36, 39, 43 | 3bitri 204 |
. . 3
|
| 45 | 35, 44 | anbi12i 447 |
. 2
|
| 46 | alrot4 1415 |
. 2
| |
| 47 | 28, 45, 46 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-fun 4924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |