ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass1 Unicode version

Theorem funimass1 4996
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 4721 . 2  |-  ( ( `' F " A ) 
C_  B  ->  ( F " ( `' F " A ) )  C_  ( F " B ) )
2 funimacnv 4995 . . . 4  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
3 dfss 2987 . . . . . 6  |-  ( A 
C_  ran  F  <->  A  =  ( A  i^i  ran  F
) )
43biimpi 118 . . . . 5  |-  ( A 
C_  ran  F  ->  A  =  ( A  i^i  ran 
F ) )
54eqcomd 2086 . . . 4  |-  ( A 
C_  ran  F  ->  ( A  i^i  ran  F
)  =  A )
62, 5sylan9eq 2133 . . 3  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( F " ( `' F " A ) )  =  A )
76sseq1d 3026 . 2  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( F "
( `' F " A ) )  C_  ( F " B )  <-> 
A  C_  ( F " B ) ) )
81, 7syl5ib 152 1  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    i^i cin 2972    C_ wss 2973   `'ccnv 4362   ran crn 4364   "cima 4366   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator