| Step | Hyp | Ref
| Expression |
| 1 | | grprinvlem.x |
. . 3
⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐵) |
| 2 | | grprinvlem.n |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) |
| 3 | 2 | ralrimiva 2434 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) |
| 4 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 + 𝑥) = (𝑦 + 𝑧)) |
| 5 | 4 | eqeq1d 2089 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑦 + 𝑧) = 𝑂)) |
| 6 | 5 | rexbidv 2369 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑧) = 𝑂)) |
| 7 | 6 | cbvralv 2577 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑧) = 𝑂) |
| 8 | 3, 7 | sylib 120 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑧) = 𝑂) |
| 9 | | oveq2 5540 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → (𝑦 + 𝑧) = (𝑦 + 𝑋)) |
| 10 | 9 | eqeq1d 2089 |
. . . . . 6
⊢ (𝑧 = 𝑋 → ((𝑦 + 𝑧) = 𝑂 ↔ (𝑦 + 𝑋) = 𝑂)) |
| 11 | 10 | rexbidv 2369 |
. . . . 5
⊢ (𝑧 = 𝑋 → (∃𝑦 ∈ 𝐵 (𝑦 + 𝑧) = 𝑂 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 𝑂)) |
| 12 | 11 | rspccva 2700 |
. . . 4
⊢
((∀𝑧 ∈
𝐵 ∃𝑦 ∈ 𝐵 (𝑦 + 𝑧) = 𝑂 ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 𝑂) |
| 13 | 8, 12 | sylan 277 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 𝑂) |
| 14 | 1, 13 | syldan 276 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 𝑂) |
| 15 | | grprinvlem.e |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝑋 + 𝑋) = 𝑋) |
| 16 | 15 | oveq2d 5548 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋)) |
| 17 | 16 | adantr 270 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋)) |
| 18 | | simprr 498 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + 𝑋) = 𝑂) |
| 19 | 18 | oveq1d 5547 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑂 + 𝑋)) |
| 20 | | simpll 495 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝜑) |
| 21 | | grprinvlem.a |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 22 | 21 | caovassg 5679 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 23 | 20, 22 | sylan 277 |
. . . . 5
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
| 24 | | simprl 497 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑦 ∈ 𝐵) |
| 25 | 1 | adantr 270 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋 ∈ 𝐵) |
| 26 | 23, 24, 25, 25 | caovassd 5680 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑦 + (𝑋 + 𝑋))) |
| 27 | | grprinvlem.i |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = 𝑥) |
| 28 | 27 | ralrimiva 2434 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑂 + 𝑥) = 𝑥) |
| 29 | | oveq2 5540 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦)) |
| 30 | | id 19 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 31 | 29, 30 | eqeq12d 2095 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦)) |
| 32 | 31 | cbvralv 2577 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦) |
| 33 | 28, 32 | sylib 120 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦) |
| 34 | 33 | adantr 270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦) |
| 35 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (𝑂 + 𝑦) = (𝑂 + 𝑋)) |
| 36 | | id 19 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) |
| 37 | 35, 36 | eqeq12d 2095 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑋) = 𝑋)) |
| 38 | 37 | rspcv 2697 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑂 + 𝑦) = 𝑦 → (𝑂 + 𝑋) = 𝑋)) |
| 39 | 1, 34, 38 | sylc 61 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝑂 + 𝑋) = 𝑋) |
| 40 | 39 | adantr 270 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑂 + 𝑋) = 𝑋) |
| 41 | 19, 26, 40 | 3eqtr3d 2121 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = 𝑋) |
| 42 | 17, 41, 18 | 3eqtr3d 2121 |
. 2
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋 = 𝑂) |
| 43 | 14, 42 | rexlimddv 2481 |
1
⊢ ((𝜑 ∧ 𝜓) → 𝑋 = 𝑂) |