ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlemconst Unicode version

Theorem ialgrlemconst 10425
Description: Lemma for ialgr0 10426. Closure of a constant function, in a form suitable for theorems such as iseq1 9442 or iseqfn 9441. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypotheses
Ref Expression
ialgrlemconst.z  |-  Z  =  ( ZZ>= `  M )
ialgrlemconst.a  |-  ( ph  ->  A  e.  S )
Assertion
Ref Expression
ialgrlemconst  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )

Proof of Theorem ialgrlemconst
StepHypRef Expression
1 ialgrlemconst.a . . 3  |-  ( ph  ->  A  e.  S )
2 ialgrlemconst.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
32eleq2i 2145 . . . 4  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
43biimpri 131 . . 3  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  Z )
5 fvconst2g 5396 . . 3  |-  ( ( A  e.  S  /\  x  e.  Z )  ->  ( ( Z  X.  { A } ) `  x )  =  A )
61, 4, 5syl2an 283 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  =  A )
71adantr 270 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A  e.  S )
86, 7eqeltrd 2155 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   {csn 3398    X. cxp 4361   ` cfv 4922   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930
This theorem is referenced by:  ialgr0  10426  ialgrf  10427  ialgrp1  10428
  Copyright terms: Public domain W3C validator