| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > indifdir | Unicode version | ||
| Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) |
| Ref | Expression |
|---|---|
| indifdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3155 |
. . . 4
| |
| 2 | elin 3155 |
. . . . 5
| |
| 3 | 2 | notbii 626 |
. . . 4
|
| 4 | 1, 3 | anbi12i 447 |
. . 3
|
| 5 | eldif 2982 |
. . 3
| |
| 6 | elin 3155 |
. . . . 5
| |
| 7 | eldif 2982 |
. . . . . 6
| |
| 8 | 7 | anbi1i 445 |
. . . . 5
|
| 9 | 6, 8 | bitri 182 |
. . . 4
|
| 10 | an32 526 |
. . . . 5
| |
| 11 | simpl 107 |
. . . . . . . 8
| |
| 12 | 11 | con3i 594 |
. . . . . . 7
|
| 13 | 12 | anim2i 334 |
. . . . . 6
|
| 14 | simpl 107 |
. . . . . . 7
| |
| 15 | ax-in2 577 |
. . . . . . . . . . 11
| |
| 16 | 15 | expcomd 1370 |
. . . . . . . . . 10
|
| 17 | 16 | impcom 123 |
. . . . . . . . 9
|
| 18 | dfnot 1302 |
. . . . . . . . 9
| |
| 19 | 17, 18 | sylibr 132 |
. . . . . . . 8
|
| 20 | 19 | adantll 459 |
. . . . . . 7
|
| 21 | 14, 20 | jca 300 |
. . . . . 6
|
| 22 | 13, 21 | impbii 124 |
. . . . 5
|
| 23 | 10, 22 | bitri 182 |
. . . 4
|
| 24 | 9, 23 | bitri 182 |
. . 3
|
| 25 | 4, 5, 24 | 3bitr4ri 211 |
. 2
|
| 26 | 25 | eqriv 2078 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-in 2979 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |