| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infglbti | Unicode version | ||
| Description: An infimum is the greatest lower bound. See also infclti 6436 and inflbti 6437. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| infclti.ti |
|
| infclti.ex |
|
| Ref | Expression |
|---|---|
| infglbti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 6398 |
. . . . 5
| |
| 2 | 1 | breq1i 3792 |
. . . 4
|
| 3 | simpr 108 |
. . . . 5
| |
| 4 | infclti.ti |
. . . . . . . 8
| |
| 5 | 4 | cnvti 6432 |
. . . . . . 7
|
| 6 | infclti.ex |
. . . . . . . 8
| |
| 7 | 6 | cnvinfex 6431 |
. . . . . . 7
|
| 8 | 5, 7 | supclti 6411 |
. . . . . 6
|
| 9 | 8 | adantr 270 |
. . . . 5
|
| 10 | brcnvg 4534 |
. . . . . 6
| |
| 11 | 10 | bicomd 139 |
. . . . 5
|
| 12 | 3, 9, 11 | syl2anc 403 |
. . . 4
|
| 13 | 2, 12 | syl5bb 190 |
. . 3
|
| 14 | 5, 7 | suplubti 6413 |
. . . . 5
|
| 15 | 14 | expdimp 255 |
. . . 4
|
| 16 | vex 2604 |
. . . . . 6
| |
| 17 | brcnvg 4534 |
. . . . . 6
| |
| 18 | 3, 16, 17 | sylancl 404 |
. . . . 5
|
| 19 | 18 | rexbidv 2369 |
. . . 4
|
| 20 | 15, 19 | sylibd 147 |
. . 3
|
| 21 | 13, 20 | sylbid 148 |
. 2
|
| 22 | 21 | expimpd 355 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-cnv 4371 df-iota 4887 df-riota 5488 df-sup 6397 df-inf 6398 |
| This theorem is referenced by: infnlbti 6439 zssinfcl 10344 |
| Copyright terms: Public domain | W3C validator |