ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplubti Unicode version

Theorem suplubti 6413
Description: A supremum is the least upper bound. See also supclti 6411 and supubti 6412. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
supclti.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
Assertion
Ref Expression
suplubti  |-  ( ph  ->  ( ( C  e.  A  /\  C R sup ( B ,  A ,  R )
)  ->  E. z  e.  B  C R
z ) )
Distinct variable groups:    u, A, v, x    y, A, x, z    x, B, y, z    u, R, v, x    y, R, z    ph, u, v, x    z, C
Allowed substitution hints:    ph( y, z)    B( v, u)    C( x, y, v, u)

Proof of Theorem suplubti
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . . 6  |-  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )
2 breq1 3788 . . . . . . . 8  |-  ( y  =  w  ->  (
y R x  <->  w R x ) )
3 breq1 3788 . . . . . . . . 9  |-  ( y  =  w  ->  (
y R z  <->  w R
z ) )
43rexbidv 2369 . . . . . . . 8  |-  ( y  =  w  ->  ( E. z  e.  B  y R z  <->  E. z  e.  B  w R
z ) )
52, 4imbi12d 232 . . . . . . 7  |-  ( y  =  w  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( w R x  ->  E. z  e.  B  w R
z ) ) )
65cbvralv 2577 . . . . . 6  |-  ( A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z )  <->  A. w  e.  A  ( w R x  ->  E. z  e.  B  w R
z ) )
71, 6sylib 120 . . . . 5  |-  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  A. w  e.  A  ( w R x  ->  E. z  e.  B  w R z ) )
87a1i 9 . . . 4  |-  ( x  e.  A  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  ->  A. w  e.  A  ( w R x  ->  E. z  e.  B  w R z ) ) )
98ss2rabi 3076 . . 3  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  C_  { x  e.  A  |  A. w  e.  A  (
w R x  ->  E. z  e.  B  w R z ) }
10 supmoti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
11 supclti.2 . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
1210, 11supval2ti 6408 . . . 4  |-  ( ph  ->  sup ( B ,  A ,  R )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
1310, 11supeuti 6407 . . . . 5  |-  ( ph  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
14 riotacl2 5501 . . . . 5  |-  ( E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) } )
1513, 14syl 14 . . . 4  |-  ( ph  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) } )
1612, 15eqeltrd 2155 . . 3  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) } )
179, 16sseldi 2997 . 2  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  { x  e.  A  |  A. w  e.  A  ( w R x  ->  E. z  e.  B  w R z ) } )
18 breq2 3789 . . . . . 6  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( w R x  <->  w R sup ( B ,  A ,  R ) ) )
1918imbi1d 229 . . . . 5  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( (
w R x  ->  E. z  e.  B  w R z )  <->  ( w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R z ) ) )
2019ralbidv 2368 . . . 4  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( A. w  e.  A  (
w R x  ->  E. z  e.  B  w R z )  <->  A. w  e.  A  ( w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R z ) ) )
2120elrab 2749 . . 3  |-  ( sup ( B ,  A ,  R )  e.  {
x  e.  A  |  A. w  e.  A  ( w R x  ->  E. z  e.  B  w R z ) }  <-> 
( sup ( B ,  A ,  R
)  e.  A  /\  A. w  e.  A  ( w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R
z ) ) )
2221simprbi 269 . 2  |-  ( sup ( B ,  A ,  R )  e.  {
x  e.  A  |  A. w  e.  A  ( w R x  ->  E. z  e.  B  w R z ) }  ->  A. w  e.  A  ( w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R
z ) )
23 breq1 3788 . . . . 5  |-  ( w  =  C  ->  (
w R sup ( B ,  A ,  R )  <->  C R sup ( B ,  A ,  R ) ) )
24 breq1 3788 . . . . . 6  |-  ( w  =  C  ->  (
w R z  <->  C R
z ) )
2524rexbidv 2369 . . . . 5  |-  ( w  =  C  ->  ( E. z  e.  B  w R z  <->  E. z  e.  B  C R
z ) )
2623, 25imbi12d 232 . . . 4  |-  ( w  =  C  ->  (
( w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R
z )  <->  ( C R sup ( B ,  A ,  R )  ->  E. z  e.  B  C R z ) ) )
2726rspccv 2698 . . 3  |-  ( A. w  e.  A  (
w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R
z )  ->  ( C  e.  A  ->  ( C R sup ( B ,  A ,  R )  ->  E. z  e.  B  C R
z ) ) )
2827impd 251 . 2  |-  ( A. w  e.  A  (
w R sup ( B ,  A ,  R )  ->  E. z  e.  B  w R
z )  ->  (
( C  e.  A  /\  C R sup ( B ,  A ,  R ) )  ->  E. z  e.  B  C R z ) )
2917, 22, 283syl 17 1  |-  ( ph  ->  ( ( C  e.  A  /\  C R sup ( B ,  A ,  R )
)  ->  E. z  e.  B  C R
z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   E!wreu 2350   {crab 2352   class class class wbr 3785   iota_crio 5487   supcsup 6395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-riota 5488  df-sup 6397
This theorem is referenced by:  suplub2ti  6414  supisoti  6423  infglbti  6438  maxleast  10099
  Copyright terms: Public domain W3C validator