ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg Unicode version

Theorem intprg 3669
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3668. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )

Proof of Theorem intprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3469 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21inteqd 3641 . . 3  |-  ( x  =  A  ->  |^| { x ,  y }  =  |^| { A ,  y } )
3 ineq1 3160 . . 3  |-  ( x  =  A  ->  (
x  i^i  y )  =  ( A  i^i  y ) )
42, 3eqeq12d 2095 . 2  |-  ( x  =  A  ->  ( |^| { x ,  y }  =  ( x  i^i  y )  <->  |^| { A ,  y }  =  ( A  i^i  y
) ) )
5 preq2 3470 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65inteqd 3641 . . 3  |-  ( y  =  B  ->  |^| { A ,  y }  =  |^| { A ,  B } )
7 ineq2 3161 . . 3  |-  ( y  =  B  ->  ( A  i^i  y )  =  ( A  i^i  B
) )
86, 7eqeq12d 2095 . 2  |-  ( y  =  B  ->  ( |^| { A ,  y }  =  ( A  i^i  y )  <->  |^| { A ,  B }  =  ( A  i^i  B ) ) )
9 vex 2604 . . 3  |-  x  e. 
_V
10 vex 2604 . . 3  |-  y  e. 
_V
119, 10intpr 3668 . 2  |-  |^| { x ,  y }  =  ( x  i^i  y
)
124, 8, 11vtocl2g 2662 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433    i^i cin 2972   {cpr 3399   |^|cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-sn 3404  df-pr 3405  df-int 3637
This theorem is referenced by:  intsng  3670  op1stbg  4228
  Copyright terms: Public domain W3C validator