ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intpr Unicode version

Theorem intpr 3668
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
Hypotheses
Ref Expression
intpr.1  |-  A  e. 
_V
intpr.2  |-  B  e. 
_V
Assertion
Ref Expression
intpr  |-  |^| { A ,  B }  =  ( A  i^i  B )

Proof of Theorem intpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1410 . . . 4  |-  ( A. y ( ( y  =  A  ->  x  e.  y )  /\  (
y  =  B  ->  x  e.  y )
)  <->  ( A. y
( y  =  A  ->  x  e.  y )  /\  A. y
( y  =  B  ->  x  e.  y ) ) )
2 vex 2604 . . . . . . . 8  |-  y  e. 
_V
32elpr 3419 . . . . . . 7  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
43imbi1i 236 . . . . . 6  |-  ( ( y  e.  { A ,  B }  ->  x  e.  y )  <->  ( (
y  =  A  \/  y  =  B )  ->  x  e.  y ) )
5 jaob 663 . . . . . 6  |-  ( ( ( y  =  A  \/  y  =  B )  ->  x  e.  y )  <->  ( (
y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
64, 5bitri 182 . . . . 5  |-  ( ( y  e.  { A ,  B }  ->  x  e.  y )  <->  ( (
y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
76albii 1399 . . . 4  |-  ( A. y ( y  e. 
{ A ,  B }  ->  x  e.  y )  <->  A. y ( ( y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
8 intpr.1 . . . . . 6  |-  A  e. 
_V
98clel4 2731 . . . . 5  |-  ( x  e.  A  <->  A. y
( y  =  A  ->  x  e.  y ) )
10 intpr.2 . . . . . 6  |-  B  e. 
_V
1110clel4 2731 . . . . 5  |-  ( x  e.  B  <->  A. y
( y  =  B  ->  x  e.  y ) )
129, 11anbi12i 447 . . . 4  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( A. y ( y  =  A  ->  x  e.  y )  /\  A. y ( y  =  B  ->  x  e.  y ) ) )
131, 7, 123bitr4i 210 . . 3  |-  ( A. y ( y  e. 
{ A ,  B }  ->  x  e.  y )  <->  ( x  e.  A  /\  x  e.  B ) )
14 vex 2604 . . . 4  |-  x  e. 
_V
1514elint 3642 . . 3  |-  ( x  e.  |^| { A ,  B }  <->  A. y ( y  e.  { A ,  B }  ->  x  e.  y ) )
16 elin 3155 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
1713, 15, 163bitr4i 210 . 2  |-  ( x  e.  |^| { A ,  B }  <->  x  e.  ( A  i^i  B ) )
1817eqriv 2078 1  |-  |^| { A ,  B }  =  ( A  i^i  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661   A.wal 1282    = wceq 1284    e. wcel 1433   _Vcvv 2601    i^i cin 2972   {cpr 3399   |^|cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-sn 3404  df-pr 3405  df-int 3637
This theorem is referenced by:  intprg  3669  op1stb  4227  onintexmid  4315
  Copyright terms: Public domain W3C validator