| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intpr | Unicode version | ||
| Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| intpr.1 |
|
| intpr.2 |
|
| Ref | Expression |
|---|---|
| intpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1410 |
. . . 4
| |
| 2 | vex 2604 |
. . . . . . . 8
| |
| 3 | 2 | elpr 3419 |
. . . . . . 7
|
| 4 | 3 | imbi1i 236 |
. . . . . 6
|
| 5 | jaob 663 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 182 |
. . . . 5
|
| 7 | 6 | albii 1399 |
. . . 4
|
| 8 | intpr.1 |
. . . . . 6
| |
| 9 | 8 | clel4 2731 |
. . . . 5
|
| 10 | intpr.2 |
. . . . . 6
| |
| 11 | 10 | clel4 2731 |
. . . . 5
|
| 12 | 9, 11 | anbi12i 447 |
. . . 4
|
| 13 | 1, 7, 12 | 3bitr4i 210 |
. . 3
|
| 14 | vex 2604 |
. . . 4
| |
| 15 | 14 | elint 3642 |
. . 3
|
| 16 | elin 3155 |
. . 3
| |
| 17 | 13, 15, 16 | 3bitr4i 210 |
. 2
|
| 18 | 17 | eqriv 2078 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-sn 3404 df-pr 3405 df-int 3637 |
| This theorem is referenced by: intprg 3669 op1stb 4227 onintexmid 4315 |
| Copyright terms: Public domain | W3C validator |