ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 Unicode version

Theorem preq1 3469
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3409 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq1d 3125 . 2  |-  ( A  =  B  ->  ( { A }  u.  { C } )  =  ( { B }  u.  { C } ) )
3 df-pr 3405 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
4 df-pr 3405 . 2  |-  { B ,  C }  =  ( { B }  u.  { C } )
52, 3, 43eqtr4g 2138 1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    u. cun 2971   {csn 3398   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405
This theorem is referenced by:  preq2  3470  preq12  3471  preq1i  3472  preq1d  3475  tpeq1  3478  prnzg  3514  preq12b  3562  preq12bg  3565  opeq1  3570  uniprg  3616  intprg  3669  prexg  3966  opthreg  4299  bj-prexg  10702
  Copyright terms: Public domain W3C validator