ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotanul Unicode version

Theorem iotanul 4902
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )

Proof of Theorem iotanul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 1944 . . 3  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 dfiota2 4888 . . . 4  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
3 alnex 1428 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  <->  -.  E. z A. x
( ph  <->  x  =  z
) )
4 ax-in2 577 . . . . . . . . . 10  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
54alimi 1384 . . . . . . . . 9  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  A. z ( A. x ( ph  <->  x  =  z )  ->  -.  z  =  z )
)
6 ss2ab 3062 . . . . . . . . 9  |-  ( { z  |  A. x
( ph  <->  x  =  z
) }  C_  { z  |  -.  z  =  z }  <->  A. z
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
75, 6sylibr 132 . . . . . . . 8  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  { z  |  -.  z  =  z } )
8 dfnul2 3253 . . . . . . . 8  |-  (/)  =  {
z  |  -.  z  =  z }
97, 8syl6sseqr 3046 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  (/) )
103, 9sylbir 133 . . . . . 6  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  { z  |  A. x ( ph  <->  x  =  z ) } 
C_  (/) )
1110unissd 3625 . . . . 5  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  U. (/) )
12 uni0 3628 . . . . 5  |-  U. (/)  =  (/)
1311, 12syl6sseq 3045 . . . 4  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  (/) )
142, 13syl5eqss 3043 . . 3  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  ( iota x ph )  C_  (/) )
151, 14sylnbi 635 . 2  |-  ( -.  E! x ph  ->  ( iota x ph )  C_  (/) )
16 ss0 3284 . 2  |-  ( ( iota x ph )  C_  (/)  ->  ( iota x ph )  =  (/) )
1715, 16syl 14 1  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421   E!weu 1941   {cab 2067    C_ wss 2973   (/)c0 3251   U.cuni 3601   iotacio 4885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-uni 3602  df-iota 4887
This theorem is referenced by:  tz6.12-2  5189  0fv  5229  riotaund  5522
  Copyright terms: Public domain W3C validator