| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmgcdeq | Unicode version | ||
| Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| lcmgcdeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslcm 10451 |
. . . . . . 7
| |
| 2 | 1 | simpld 110 |
. . . . . 6
|
| 3 | 2 | adantr 270 |
. . . . 5
|
| 4 | gcddvds 10355 |
. . . . . . . 8
| |
| 5 | 4 | simprd 112 |
. . . . . . 7
|
| 6 | breq1 3788 |
. . . . . . 7
| |
| 7 | 5, 6 | syl5ibrcom 155 |
. . . . . 6
|
| 8 | 7 | imp 122 |
. . . . 5
|
| 9 | lcmcl 10454 |
. . . . . . . . . . 11
| |
| 10 | 9 | nn0zd 8467 |
. . . . . . . . . 10
|
| 11 | dvdstr 10232 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl3an2 1203 |
. . . . . . . . 9
|
| 13 | 12 | 3com12 1142 |
. . . . . . . 8
|
| 14 | 13 | 3expb 1139 |
. . . . . . 7
|
| 15 | 14 | anidms 389 |
. . . . . 6
|
| 16 | 15 | adantr 270 |
. . . . 5
|
| 17 | 3, 8, 16 | mp2and 423 |
. . . 4
|
| 18 | absdvdsb 10213 |
. . . . . 6
| |
| 19 | zabscl 9972 |
. . . . . . 7
| |
| 20 | dvdsabsb 10214 |
. . . . . . 7
| |
| 21 | 19, 20 | sylan 277 |
. . . . . 6
|
| 22 | 18, 21 | bitrd 186 |
. . . . 5
|
| 23 | 22 | adantr 270 |
. . . 4
|
| 24 | 17, 23 | mpbid 145 |
. . 3
|
| 25 | 1 | simprd 112 |
. . . . . 6
|
| 26 | 25 | adantr 270 |
. . . . 5
|
| 27 | 4 | simpld 110 |
. . . . . . 7
|
| 28 | breq1 3788 |
. . . . . . 7
| |
| 29 | 27, 28 | syl5ibrcom 155 |
. . . . . 6
|
| 30 | 29 | imp 122 |
. . . . 5
|
| 31 | dvdstr 10232 |
. . . . . . . . . 10
| |
| 32 | 10, 31 | syl3an2 1203 |
. . . . . . . . 9
|
| 33 | 32 | 3coml 1145 |
. . . . . . . 8
|
| 34 | 33 | 3expb 1139 |
. . . . . . 7
|
| 35 | 34 | anidms 389 |
. . . . . 6
|
| 36 | 35 | adantr 270 |
. . . . 5
|
| 37 | 26, 30, 36 | mp2and 423 |
. . . 4
|
| 38 | absdvdsb 10213 |
. . . . . . 7
| |
| 39 | zabscl 9972 |
. . . . . . . 8
| |
| 40 | dvdsabsb 10214 |
. . . . . . . 8
| |
| 41 | 39, 40 | sylan 277 |
. . . . . . 7
|
| 42 | 38, 41 | bitrd 186 |
. . . . . 6
|
| 43 | 42 | ancoms 264 |
. . . . 5
|
| 44 | 43 | adantr 270 |
. . . 4
|
| 45 | 37, 44 | mpbid 145 |
. . 3
|
| 46 | nn0abscl 9971 |
. . . . . . 7
| |
| 47 | nn0abscl 9971 |
. . . . . . 7
| |
| 48 | 46, 47 | anim12i 331 |
. . . . . 6
|
| 49 | dvdseq 10248 |
. . . . . 6
| |
| 50 | 48, 49 | sylan 277 |
. . . . 5
|
| 51 | 50 | ex 113 |
. . . 4
|
| 52 | 51 | adantr 270 |
. . 3
|
| 53 | 24, 45, 52 | mp2and 423 |
. 2
|
| 54 | lcmid 10462 |
. . . . . . . 8
| |
| 55 | 19, 54 | syl 14 |
. . . . . . 7
|
| 56 | gcdid 10377 |
. . . . . . . 8
| |
| 57 | 19, 56 | syl 14 |
. . . . . . 7
|
| 58 | 55, 57 | eqtr4d 2116 |
. . . . . 6
|
| 59 | oveq2 5540 |
. . . . . . 7
| |
| 60 | oveq2 5540 |
. . . . . . 7
| |
| 61 | 59, 60 | eqeq12d 2095 |
. . . . . 6
|
| 62 | 58, 61 | syl5ibcom 153 |
. . . . 5
|
| 63 | 62 | imp 122 |
. . . 4
|
| 64 | 63 | adantlr 460 |
. . 3
|
| 65 | lcmabs 10458 |
. . . . 5
| |
| 66 | gcdabs 10379 |
. . . . 5
| |
| 67 | 65, 66 | eqeq12d 2095 |
. . . 4
|
| 68 | 67 | adantr 270 |
. . 3
|
| 69 | 64, 68 | mpbid 145 |
. 2
|
| 70 | 53, 69 | impbida 560 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-inf 6398 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-fz 9030 df-fzo 9153 df-fl 9274 df-mod 9325 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-gcd 10339 df-lcm 10443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |