ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd1i Unicode version

Theorem ltadd1i 7603
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
lt2.3  |-  C  e.  RR
Assertion
Ref Expression
ltadd1i  |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
)

Proof of Theorem ltadd1i
StepHypRef Expression
1 lt2.1 . 2  |-  A  e.  RR
2 lt2.2 . 2  |-  B  e.  RR
3 lt2.3 . 2  |-  C  e.  RR
4 ltadd1 7533 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
) )
51, 2, 3, 4mp3an 1268 1  |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980    + caddc 6984    < clt 7153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-iota 4887  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-ltxr 7158
This theorem is referenced by:  inelr  7684
  Copyright terms: Public domain W3C validator