HomeHome Intuitionistic Logic Explorer
Theorem List (p. 77 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7601-7700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlenegcon1i 7601 Contraposition of negative in 'less than or equal to'. (Contributed by NM, 6-Apr-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( -u A  <_  B  <->  -u B  <_  A )
 
Theoremsubge0i 7602 Nonnegative subtraction. (Contributed by NM, 13-Aug-2000.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( 0  <_  ( A  -  B )  <->  B  <_  A )
 
Theoremltadd1i 7603 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C ) )
 
Theoremleadd1i 7604 Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C ) )
 
Theoremleadd2i 7605 Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) )
 
Theoremltsubaddi 7606 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <  C  <->  A  <  ( C  +  B ) )
 
Theoremlesubaddi 7607 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 30-Sep-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <_  C  <->  A  <_  ( C  +  B ) )
 
Theoremltsubadd2i 7608 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <  C  <->  A  <  ( B  +  C ) )
 
Theoremlesubadd2i 7609 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <_  C  <->  A  <_  ( B  +  C ) )
 
Theoremltaddsubi 7610 'Less than' relationship between subtraction and addition. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  +  B )  <  C  <->  A  <  ( C  -  B ) )
 
Theoremlt2addi 7611 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  D  e.  RR   =>    |-  ( ( A  <  C 
 /\  B  <  D )  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremle2addi 7612 Adding both side of two inequalities. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  D  e.  RR   =>    |-  ( ( A  <_  C 
 /\  B  <_  D )  ->  ( A  +  B )  <_  ( C  +  D ) )
 
Theoremgt0ne0d 7613 Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremlt0ne0d 7614 Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremleidd 7615 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <_  A )
 
Theoremlt0neg1d 7616 Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
 
Theoremlt0neg2d 7617 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  (
 0  <  A  <->  -u A  <  0
 ) )
 
Theoremle0neg1d 7618 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  <_  0  <->  0  <_  -u A ) )
 
Theoremle0neg2d 7619 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  (
 0  <_  A  <->  -u A  <_  0
 ) )
 
Theoremaddgegt0d 7620 Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  +  B ) )
 
Theoremaddgt0d 7621 Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  +  B ) )
 
Theoremaddge0d 7622 Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  ( A  +  B ) )
 
Theoremltnegd 7623 Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  -u B  <  -u A ) )
 
Theoremlenegd 7624 Negative of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  -u B  <_  -u A ) )
 
Theoremltnegcon1d 7625 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  -u A  <  B )   =>    |-  ( ph  ->  -u B  <  A )
 
Theoremltnegcon2d 7626 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  -u B )   =>    |-  ( ph  ->  B  < 
 -u A )
 
Theoremlenegcon1d 7627 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  -u A  <_  B )   =>    |-  ( ph  ->  -u B  <_  A )
 
Theoremlenegcon2d 7628 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  -u B )   =>    |-  ( ph  ->  B  <_ 
 -u A )
 
Theoremltaddposd 7629 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  A  <->  B  <  ( B  +  A ) ) )
 
Theoremltaddpos2d 7630 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  A  <->  B  <  ( A  +  B ) ) )
 
Theoremltsubposd 7631 Subtracting a positive number from another number decreases it. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  A  <->  ( B  -  A )  <  B ) )
 
Theoremposdifd 7632 Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
 
Theoremaddge01d 7633 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
 
Theoremaddge02d 7634 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  B  <->  A  <_  ( B  +  A ) ) )
 
Theoremsubge0d 7635 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  ( A  -  B )  <->  B  <_  A ) )
 
Theoremsuble0d 7636 Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( A  -  B )  <_  0  <->  A  <_  B ) )
 
Theoremsubge02d 7637 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  B  <->  ( A  -  B )  <_  A ) )
 
Theoremltadd1d 7638 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C ) ) )
 
Theoremleadd1d 7639 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C ) ) )
 
Theoremleadd2d 7640 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) ) )
 
Theoremltsubaddd 7641 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <  C  <->  A  <  ( C  +  B ) ) )
 
Theoremlesubaddd 7642 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <_  C  <->  A  <_  ( C  +  B ) ) )
 
Theoremltsubadd2d 7643 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <  C  <->  A  <  ( B  +  C ) ) )
 
Theoremlesubadd2d 7644 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <_  C  <->  A  <_  ( B  +  C ) ) )
 
Theoremltaddsubd 7645 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )
 
Theoremltaddsub2d 7646 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  <->  B  <  ( C  -  A ) ) )
 
Theoremleaddsub2d 7647 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  +  B )  <_  C  <->  B  <_  ( C  -  A ) ) )
 
Theoremsubled 7648 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( A  -  B )  <_  C )   =>    |-  ( ph  ->  ( A  -  C )  <_  B )
 
Theoremlesubd 7649 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  ( B  -  C ) )   =>    |-  ( ph  ->  C  <_  ( B  -  A ) )
 
Theoremltsub23d 7650 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( A  -  B )  <  C )   =>    |-  ( ph  ->  ( A  -  C )  <  B )
 
Theoremltsub13d 7651 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  ( B  -  C ) )   =>    |-  ( ph  ->  C  <  ( B  -  A ) )
 
Theoremlesub1d 7652 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  -  C )  <_  ( B  -  C ) ) )
 
Theoremlesub2d 7653 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A ) ) )
 
Theoremltsub1d 7654 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  -  C )  <  ( B  -  C ) ) )
 
Theoremltsub2d 7655 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  -  B )  <  ( C  -  A ) ) )
 
Theoremltadd1dd 7656 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  +  C )  <  ( B  +  C ) )
 
Theoremltsub1dd 7657 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  -  C )  < 
 ( B  -  C ) )
 
Theoremltsub2dd 7658 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( C  -  B )  < 
 ( C  -  A ) )
 
Theoremleadd1dd 7659 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  +  C )  <_  ( B  +  C ) )
 
Theoremleadd2dd 7660 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( C  +  A )  <_  ( C  +  B ) )
 
Theoremlesub1dd 7661 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  -  C )  <_  ( B  -  C ) )
 
Theoremlesub2dd 7662 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( C  -  B )  <_  ( C  -  A ) )
 
Theoremle2addd 7663 Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B 
 <_  D )   =>    |-  ( ph  ->  ( A  +  B )  <_  ( C  +  D ) )
 
Theoremle2subd 7664 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B 
 <_  D )   =>    |-  ( ph  ->  ( A  -  D )  <_  ( C  -  B ) )
 
Theoremltleaddd 7665 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <_  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremleltaddd 7666 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremlt2addd 7667 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremlt2subd 7668 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  -  D )  < 
 ( C  -  B ) )
 
Theorempossumd 7669 Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  ( A  +  B )  <->  -u B  <  A ) )
 
Theoremsublt0d 7670 When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( A  -  B )  <  0  <->  A  <  B ) )
 
Theoremltaddsublt 7671 Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  C  <->  ( ( A  +  B )  -  C )  <  A ) )
 
Theorem1le1 7672  1  <_  1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
 |-  1  <_  1
 
Theoremgt0add 7673 A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B ) ) 
 ->  ( 0  <  A  \/  0  <  B ) )
 
3.3.5  Real Apartness
 
Syntaxcreap 7674 Class of real apartness relation.
 class #
 
Definitiondf-reap 7675* Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although # is an apartness relation on the reals (see df-ap 7682 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, # and # agree (apreap 7687). (Contributed by Jim Kingdon, 26-Jan-2020.)
 |- #  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
 
Theoremreapval 7676 Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 7688 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  <  A ) ) )
 
Theoremreapirr 7677 Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 7705 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
 |-  ( A  e.  RR  ->  -.  A #  A )
 
Theoremrecexre 7678* Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
 
Theoremreapti 7679 Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 7722. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  -.  A #  B ) )
 
Theoremrecexgt0 7680* Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x )  =  1 )
 )
 
3.3.6  Complex Apartness
 
Syntaxcap 7681 Class of complex apartness relation.
 class #
 
Definitiondf-ap 7682* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 7767 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 7705), symmetry (apsym 7706), and cotransitivity (apcotr 7707). Apartness implies negated equality, as seen at apne 7723, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 7722).

(Contributed by Jim Kingdon, 26-Jan-2020.)

 |- # 
 =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e. 
 RR  E. t  e.  RR  E. u  e.  RR  (
 ( x  =  ( r  +  ( _i 
 x.  s ) ) 
 /\  y  =  ( t  +  ( _i 
 x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) }
 
Theoremixi 7683  _i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( _i  x.  _i )  =  -u 1
 
Theoreminelr 7684 The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
 |- 
 -.  _i  e.  RR
 
Theoremrimul 7685 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  ->  A  =  0 )
 
Theoremrereim 7686 Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  ( B  =  A  /\  C  =  0 )
 )
 
Theoremapreap 7687 Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B ) )
 
Theoremreaplt 7688 Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  <  A ) ) )
 
Theoremreapltxor 7689 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/_  B  <  A ) ) )
 
Theorem1ap0 7690 One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  1 #  0
 
Theoremltmul1a 7691 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  <  B )  ->  ( A  x.  C )  <  ( B  x.  C ) )
 
Theoremltmul1 7692 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremlemul1 7693 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremreapmul1lem 7694 Lemma for reapmul1 7695. (Contributed by Jim Kingdon, 8-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A #  B 
 <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremreapmul1 7695 Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 7876. (Contributed by Jim Kingdon, 8-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) ) 
 ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremreapadd1 7696 Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  +  C ) #  ( B  +  C ) ) )
 
Theoremreapneg 7697 Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  -u A #  -u B ) )
 
Theoremreapcotr 7698 Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C ) ) )
 
Theoremremulext1 7699 Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
 
Theoremremulext2 7700 Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( C  x.  A ) #  ( C  x.  B )  ->  A #  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >