| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpt2eq3dva | Unicode version | ||
| Description: Slightly more general equality inference for the maps to notation. (Contributed by NM, 17-Oct-2013.) |
| Ref | Expression |
|---|---|
| mpt2eq3dva.1 |
|
| Ref | Expression |
|---|---|
| mpt2eq3dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpt2eq3dva.1 |
. . . . . 6
| |
| 2 | 1 | 3expb 1139 |
. . . . 5
|
| 3 | 2 | eqeq2d 2092 |
. . . 4
|
| 4 | 3 | pm5.32da 439 |
. . 3
|
| 5 | 4 | oprabbidv 5579 |
. 2
|
| 6 | df-mpt2 5537 |
. 2
| |
| 7 | df-mpt2 5537 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2138 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-oprab 5536 df-mpt2 5537 |
| This theorem is referenced by: mpt2eq3ia 5590 ofeq 5734 fmpt2co 5857 iseqeq2 9435 iseqeq3 9436 iseqval 9440 |
| Copyright terms: Public domain | W3C validator |