ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqval Unicode version

Theorem iseqval 9440
Description: Value of the sequence builder function. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
iseqval.1  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
iseqval.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqval.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqval  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  ran  R )
Distinct variable groups:    w, F, x, y, z    w,  .+ , x, y, z    w, M, x, y, z    w, S, x, y, z    ph, x, y
Allowed substitution hints:    ph( z, w)    R( x, y, z, w)

Proof of Theorem iseqval
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqval.1 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
2 simprl 497 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
3 simprr 498 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
4 iseqval.pl . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
54caovclg 5673 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
65adantlr 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
7 iseqval.f . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
87ralrimiva 2434 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
9 fveq2 5198 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
109eleq1d 2147 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( F `  x
)  e.  S  <->  ( F `  y )  e.  S
) )
1110cbvralv 2577 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( ZZ>= `  M ) ( F `
 x )  e.  S  <->  A. y  e.  (
ZZ>= `  M ) ( F `  y )  e.  S )
128, 11sylib 120 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  (
ZZ>= `  M ) ( F `  y )  e.  S )
1312adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. y  e.  ( ZZ>= `  M )
( F `  y
)  e.  S )
14 peano2uz 8671 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
15 fveq2 5198 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  + 
1 )  ->  ( F `  y )  =  ( F `  ( x  +  1
) ) )
1615eleq1d 2147 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  + 
1 )  ->  (
( F `  y
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
1716rspcv 2697 . . . . . . . . . . . . 13  |-  ( ( x  +  1 )  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( ZZ>= `  M ) ( F `
 y )  e.  S  ->  ( F `  ( x  +  1 ) )  e.  S
) )
1814, 17syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( ZZ>= `  M ) ( F `
 y )  e.  S  ->  ( F `  ( x  +  1 ) )  e.  S
) )
1918ad2antrl 473 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( A. y  e.  ( ZZ>=
`  M ) ( F `  y )  e.  S  ->  ( F `  ( x  +  1 ) )  e.  S ) )
2013, 19mpd 13 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
216, 3, 20caovcld 5674 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
22 oveq1 5539 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
2322fveq2d 5202 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
2423oveq2d 5548 . . . . . . . . . 10  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
25 oveq1 5539 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
26 eqid 2081 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
2724, 25, 26ovmpt2g 5655 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  S  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
282, 3, 21, 27syl3anc 1169 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
29283impb 1134 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  S
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3029opeq2d 3577 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  S
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )
3130mpt2eq3dva 5589 . . . . 5  |-  ( ph  ->  ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
)  =  ( x  e.  ( ZZ>= `  M
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) )
32 freceq1 6002 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
)  -> frec ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
3331, 32syl 14 . . . 4  |-  ( ph  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
341, 33syl5eq 2125 . . 3  |-  ( ph  ->  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
)
3534rneqd 4581 . 2  |-  ( ph  ->  ran  R  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
36 df-iseq 9432 . 2  |-  seq M
(  .+  ,  F ,  S )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
3735, 36syl6reqr 2132 1  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   <.cop 3401   ran crn 4364   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534  freccfrec 6000   1c1 6982    + caddc 6984   ZZ>=cuz 8619    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  iseqfn  9441  iseq1  9442  iseqcl  9443  iseqp1  9445
  Copyright terms: Public domain W3C validator