| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqeq3 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| iseqeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 938 |
. . . . . . . 8
| |
| 2 | 1 | fveq1d 5200 |
. . . . . . 7
|
| 3 | 2 | oveq2d 5548 |
. . . . . 6
|
| 4 | 3 | opeq2d 3577 |
. . . . 5
|
| 5 | 4 | mpt2eq3dva 5589 |
. . . 4
|
| 6 | fveq1 5197 |
. . . . 5
| |
| 7 | 6 | opeq2d 3577 |
. . . 4
|
| 8 | freceq1 6002 |
. . . . 5
| |
| 9 | freceq2 6003 |
. . . . 5
| |
| 10 | 8, 9 | sylan9eq 2133 |
. . . 4
|
| 11 | 5, 7, 10 | syl2anc 403 |
. . 3
|
| 12 | 11 | rneqd 4581 |
. 2
|
| 13 | df-iseq 9432 |
. 2
| |
| 14 | df-iseq 9432 |
. 2
| |
| 15 | 12, 13, 14 | 3eqtr4g 2138 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-iota 4887 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-recs 5943 df-frec 6001 df-iseq 9432 |
| This theorem is referenced by: expival 9478 sumeq1 10192 |
| Copyright terms: Public domain | W3C validator |