| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpt2xopoveq | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpt2xopoveq.f |
|
| Ref | Expression |
|---|---|
| mpt2xopoveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpt2xopoveq.f |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | fveq2 5198 |
. . . . 5
| |
| 4 | op1stg 5797 |
. . . . . 6
| |
| 5 | 4 | adantr 270 |
. . . . 5
|
| 6 | 3, 5 | sylan9eqr 2135 |
. . . 4
|
| 7 | 6 | adantrr 462 |
. . 3
|
| 8 | sbceq1a 2824 |
. . . . . 6
| |
| 9 | 8 | adantl 271 |
. . . . 5
|
| 10 | 9 | adantl 271 |
. . . 4
|
| 11 | sbceq1a 2824 |
. . . . . 6
| |
| 12 | 11 | adantr 270 |
. . . . 5
|
| 13 | 12 | adantl 271 |
. . . 4
|
| 14 | 10, 13 | bitrd 186 |
. . 3
|
| 15 | 7, 14 | rabeqbidv 2596 |
. 2
|
| 16 | opexg 3983 |
. . 3
| |
| 17 | 16 | adantr 270 |
. 2
|
| 18 | simpr 108 |
. 2
| |
| 19 | rabexg 3921 |
. . 3
| |
| 20 | 19 | ad2antrr 471 |
. 2
|
| 21 | equid 1629 |
. . 3
| |
| 22 | nfvd 1462 |
. . 3
| |
| 23 | 21, 22 | ax-mp 7 |
. 2
|
| 24 | nfvd 1462 |
. . 3
| |
| 25 | 21, 24 | ax-mp 7 |
. 2
|
| 26 | nfcv 2219 |
. 2
| |
| 27 | nfcv 2219 |
. 2
| |
| 28 | nfsbc1v 2833 |
. . 3
| |
| 29 | nfcv 2219 |
. . 3
| |
| 30 | 28, 29 | nfrabxy 2534 |
. 2
|
| 31 | nfsbc1v 2833 |
. . . 4
| |
| 32 | 26, 31 | nfsbc 2835 |
. . 3
|
| 33 | nfcv 2219 |
. . 3
| |
| 34 | 32, 33 | nfrabxy 2534 |
. 2
|
| 35 | 2, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34 | ovmpt2dxf 5646 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 |
| This theorem is referenced by: mpt2xopovel 5879 |
| Copyright terms: Public domain | W3C validator |