| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpt2dxf | Unicode version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpt2dx.1 |
|
| ovmpt2dx.2 |
|
| ovmpt2dx.3 |
|
| ovmpt2dx.4 |
|
| ovmpt2dx.5 |
|
| ovmpt2dx.6 |
|
| ovmpt2dxf.px |
|
| ovmpt2dxf.py |
|
| ovmpt2dxf.ay |
|
| ovmpt2dxf.bx |
|
| ovmpt2dxf.sx |
|
| ovmpt2dxf.sy |
|
| Ref | Expression |
|---|---|
| ovmpt2dxf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt2dx.1 |
. . 3
| |
| 2 | 1 | oveqd 5549 |
. 2
|
| 3 | ovmpt2dx.4 |
. . . 4
| |
| 4 | ovmpt2dxf.px |
. . . . 5
| |
| 5 | ovmpt2dx.5 |
. . . . . 6
| |
| 6 | ovmpt2dxf.py |
. . . . . . 7
| |
| 7 | eqid 2081 |
. . . . . . . . 9
| |
| 8 | 7 | ovmpt4g 5643 |
. . . . . . . 8
|
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | 6, 9 | alrimi 1455 |
. . . . . 6
|
| 11 | 5, 10 | spsbcd 2827 |
. . . . 5
|
| 12 | 4, 11 | alrimi 1455 |
. . . 4
|
| 13 | 3, 12 | spsbcd 2827 |
. . 3
|
| 14 | 5 | adantr 270 |
. . . . 5
|
| 15 | simplr 496 |
. . . . . . . 8
| |
| 16 | 3 | ad2antrr 471 |
. . . . . . . 8
|
| 17 | 15, 16 | eqeltrd 2155 |
. . . . . . 7
|
| 18 | 5 | ad2antrr 471 |
. . . . . . . 8
|
| 19 | simpr 108 |
. . . . . . . 8
| |
| 20 | ovmpt2dx.3 |
. . . . . . . . 9
| |
| 21 | 20 | adantr 270 |
. . . . . . . 8
|
| 22 | 18, 19, 21 | 3eltr4d 2162 |
. . . . . . 7
|
| 23 | ovmpt2dx.2 |
. . . . . . . . 9
| |
| 24 | 23 | anassrs 392 |
. . . . . . . 8
|
| 25 | ovmpt2dx.6 |
. . . . . . . . . 10
| |
| 26 | elex 2610 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . . 9
|
| 28 | 27 | ad2antrr 471 |
. . . . . . . 8
|
| 29 | 24, 28 | eqeltrd 2155 |
. . . . . . 7
|
| 30 | biimt 239 |
. . . . . . 7
| |
| 31 | 17, 22, 29, 30 | syl3anc 1169 |
. . . . . 6
|
| 32 | 15, 19 | oveq12d 5550 |
. . . . . . 7
|
| 33 | 32, 24 | eqeq12d 2095 |
. . . . . 6
|
| 34 | 31, 33 | bitr3d 188 |
. . . . 5
|
| 35 | ovmpt2dxf.ay |
. . . . . . 7
| |
| 36 | 35 | nfeq2 2230 |
. . . . . 6
|
| 37 | 6, 36 | nfan 1497 |
. . . . 5
|
| 38 | nfmpt22 5592 |
. . . . . . . 8
| |
| 39 | nfcv 2219 |
. . . . . . . 8
| |
| 40 | 35, 38, 39 | nfov 5555 |
. . . . . . 7
|
| 41 | ovmpt2dxf.sy |
. . . . . . 7
| |
| 42 | 40, 41 | nfeq 2226 |
. . . . . 6
|
| 43 | 42 | a1i 9 |
. . . . 5
|
| 44 | 14, 34, 37, 43 | sbciedf 2849 |
. . . 4
|
| 45 | nfcv 2219 |
. . . . . . 7
| |
| 46 | nfmpt21 5591 |
. . . . . . 7
| |
| 47 | ovmpt2dxf.bx |
. . . . . . 7
| |
| 48 | 45, 46, 47 | nfov 5555 |
. . . . . 6
|
| 49 | ovmpt2dxf.sx |
. . . . . 6
| |
| 50 | 48, 49 | nfeq 2226 |
. . . . 5
|
| 51 | 50 | a1i 9 |
. . . 4
|
| 52 | 3, 44, 4, 51 | sbciedf 2849 |
. . 3
|
| 53 | 13, 52 | mpbid 145 |
. 2
|
| 54 | 2, 53 | eqtrd 2113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 |
| This theorem is referenced by: ovmpt2dx 5647 mpt2xopoveq 5878 |
| Copyright terms: Public domain | W3C validator |