ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2dxf Unicode version

Theorem ovmpt2dxf 5646
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpt2dx.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpt2dx.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpt2dx.3  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
ovmpt2dx.4  |-  ( ph  ->  A  e.  C )
ovmpt2dx.5  |-  ( ph  ->  B  e.  L )
ovmpt2dx.6  |-  ( ph  ->  S  e.  X )
ovmpt2dxf.px  |-  F/ x ph
ovmpt2dxf.py  |-  F/ y
ph
ovmpt2dxf.ay  |-  F/_ y A
ovmpt2dxf.bx  |-  F/_ x B
ovmpt2dxf.sx  |-  F/_ x S
ovmpt2dxf.sy  |-  F/_ y S
Assertion
Ref Expression
ovmpt2dxf  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y    x, A    y, B
Allowed substitution hints:    ph( x, y)    A( y)    B( x)    C( x, y)    D( x, y)    R( x, y)    S( x, y)    F( x, y)    L( x, y)    X( x, y)

Proof of Theorem ovmpt2dxf
StepHypRef Expression
1 ovmpt2dx.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
21oveqd 5549 . 2  |-  ( ph  ->  ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
3 ovmpt2dx.4 . . . 4  |-  ( ph  ->  A  e.  C )
4 ovmpt2dxf.px . . . . 5  |-  F/ x ph
5 ovmpt2dx.5 . . . . . 6  |-  ( ph  ->  B  e.  L )
6 ovmpt2dxf.py . . . . . . 7  |-  F/ y
ph
7 eqid 2081 . . . . . . . . 9  |-  ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C ,  y  e.  D  |->  R )
87ovmpt4g 5643 . . . . . . . 8  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
98a1i 9 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
106, 9alrimi 1455 . . . . . 6  |-  ( ph  ->  A. y ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
115, 10spsbcd 2827 . . . . 5  |-  ( ph  ->  [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
124, 11alrimi 1455 . . . 4  |-  ( ph  ->  A. x [. B  /  y ]. (
( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( x ( x  e.  C , 
y  e.  D  |->  R ) y )  =  R ) )
133, 12spsbcd 2827 . . 3  |-  ( ph  ->  [. A  /  x ]. [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) )
145adantr 270 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  L )
15 simplr 496 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  x  =  A )
163ad2antrr 471 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  A  e.  C )
1715, 16eqeltrd 2155 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  x  e.  C )
185ad2antrr 471 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  B  e.  L )
19 simpr 108 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  y  =  B )
20 ovmpt2dx.3 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
2120adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  D  =  L )
2218, 19, 213eltr4d 2162 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  y  e.  D )
23 ovmpt2dx.2 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
2423anassrs 392 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  R  =  S )
25 ovmpt2dx.6 . . . . . . . . . 10  |-  ( ph  ->  S  e.  X )
26 elex 2610 . . . . . . . . . 10  |-  ( S  e.  X  ->  S  e.  _V )
2725, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  S  e.  _V )
2827ad2antrr 471 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  S  e.  _V )
2924, 28eqeltrd 2155 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  R  e.  _V )
30 biimt 239 . . . . . . 7  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  _V )  ->  ( ( x ( x  e.  C , 
y  e.  D  |->  R ) y )  =  R  <->  ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) ) )
3117, 22, 29, 30syl3anc 1169 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R  <-> 
( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R ) ) )
3215, 19oveq12d 5550 . . . . . . 7  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
3332, 24eqeq12d 2095 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
3431, 33bitr3d 188 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  (
( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
35 ovmpt2dxf.ay . . . . . . 7  |-  F/_ y A
3635nfeq2 2230 . . . . . 6  |-  F/ y  x  =  A
376, 36nfan 1497 . . . . 5  |-  F/ y ( ph  /\  x  =  A )
38 nfmpt22 5592 . . . . . . . 8  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
39 nfcv 2219 . . . . . . . 8  |-  F/_ y B
4035, 38, 39nfov 5555 . . . . . . 7  |-  F/_ y
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
41 ovmpt2dxf.sy . . . . . . 7  |-  F/_ y S
4240, 41nfeq 2226 . . . . . 6  |-  F/ y ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
4342a1i 9 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  F/ y ( A ( x  e.  C , 
y  e.  D  |->  R ) B )  =  S )
4414, 34, 37, 43sbciedf 2849 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( [. B  /  y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
45 nfcv 2219 . . . . . . 7  |-  F/_ x A
46 nfmpt21 5591 . . . . . . 7  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
47 ovmpt2dxf.bx . . . . . . 7  |-  F/_ x B
4845, 46, 47nfov 5555 . . . . . 6  |-  F/_ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )
49 ovmpt2dxf.sx . . . . . 6  |-  F/_ x S
5048, 49nfeq 2226 . . . . 5  |-  F/ x
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S
5150a1i 9 . . . 4  |-  ( ph  ->  F/ x ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
523, 44, 4, 51sbciedf 2849 . . 3  |-  ( ph  ->  ( [. A  /  x ]. [. B  / 
y ]. ( ( x  e.  C  /\  y  e.  D  /\  R  e. 
_V )  ->  (
x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )  <-> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S ) )
5313, 52mpbid 145 . 2  |-  ( ph  ->  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  S )
542, 53eqtrd 2113 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284   F/wnf 1389    e. wcel 1433   F/_wnfc 2206   _Vcvv 2601   [.wsbc 2815  (class class class)co 5532    |-> cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537
This theorem is referenced by:  ovmpt2dx  5647  mpt2xopoveq  5878
  Copyright terms: Public domain W3C validator