| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbi | Unicode version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 |
|
| mtbi.2 |
|
| Ref | Expression |
|---|---|
| mtbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 |
. 2
| |
| 2 | mtbi.2 |
. . 3
| |
| 3 | 2 | biimpri 131 |
. 2
|
| 4 | 1, 3 | mto 620 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: mtbir 628 vprc 3909 vnex 3911 onsucelsucexmid 4273 dtruex 4302 dmsn0 4808 php5 6344 ndvdsi 10333 nprmi 10506 bj-vprc 10687 bj-vnex 10689 |
| Copyright terms: Public domain | W3C validator |