ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5 Unicode version

Theorem php5 6344
Description: A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
php5  |-  ( A  e.  om  ->  -.  A  ~~  suc  A )

Proof of Theorem php5
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  =  (/)  ->  w  =  (/) )
2 suceq 4157 . . . 4  |-  ( w  =  (/)  ->  suc  w  =  suc  (/) )
31, 2breq12d 3798 . . 3  |-  ( w  =  (/)  ->  ( w 
~~  suc  w  <->  (/)  ~~  suc  (/) ) )
43notbid 624 . 2  |-  ( w  =  (/)  ->  ( -.  w  ~~  suc  w  <->  -.  (/)  ~~  suc  (/) ) )
5 id 19 . . . 4  |-  ( w  =  k  ->  w  =  k )
6 suceq 4157 . . . 4  |-  ( w  =  k  ->  suc  w  =  suc  k )
75, 6breq12d 3798 . . 3  |-  ( w  =  k  ->  (
w  ~~  suc  w  <->  k  ~~  suc  k ) )
87notbid 624 . 2  |-  ( w  =  k  ->  ( -.  w  ~~  suc  w  <->  -.  k  ~~  suc  k
) )
9 id 19 . . . 4  |-  ( w  =  suc  k  ->  w  =  suc  k )
10 suceq 4157 . . . 4  |-  ( w  =  suc  k  ->  suc  w  =  suc  suc  k )
119, 10breq12d 3798 . . 3  |-  ( w  =  suc  k  -> 
( w  ~~  suc  w 
<->  suc  k  ~~  suc  suc  k ) )
1211notbid 624 . 2  |-  ( w  =  suc  k  -> 
( -.  w  ~~  suc  w  <->  -.  suc  k  ~~  suc  suc  k ) )
13 id 19 . . . 4  |-  ( w  =  A  ->  w  =  A )
14 suceq 4157 . . . 4  |-  ( w  =  A  ->  suc  w  =  suc  A )
1513, 14breq12d 3798 . . 3  |-  ( w  =  A  ->  (
w  ~~  suc  w  <->  A  ~~  suc  A ) )
1615notbid 624 . 2  |-  ( w  =  A  ->  ( -.  w  ~~  suc  w  <->  -.  A  ~~  suc  A
) )
17 peano1 4335 . . . . 5  |-  (/)  e.  om
18 peano3 4337 . . . . 5  |-  ( (/)  e.  om  ->  suc  (/)  =/=  (/) )
1917, 18ax-mp 7 . . . 4  |-  suc  (/)  =/=  (/)
20 en0 6298 . . . 4  |-  ( suc  (/)  ~~  (/)  <->  suc  (/)  =  (/) )
2119, 20nemtbir 2334 . . 3  |-  -.  suc  (/)  ~~  (/)
22 ensymb 6283 . . 3  |-  ( suc  (/)  ~~  (/)  <->  (/)  ~~  suc  (/) )
2321, 22mtbi 627 . 2  |-  -.  (/)  ~~  suc  (/)
24 peano2 4336 . . . 4  |-  ( k  e.  om  ->  suc  k  e.  om )
25 vex 2604 . . . . 5  |-  k  e. 
_V
2625sucex 4243 . . . . 5  |-  suc  k  e.  _V
2725, 26phplem4 6341 . . . 4  |-  ( ( k  e.  om  /\  suc  k  e.  om )  ->  ( suc  k  ~~  suc  suc  k  ->  k 
~~  suc  k )
)
2824, 27mpdan 412 . . 3  |-  ( k  e.  om  ->  ( suc  k  ~~  suc  suc  k  ->  k  ~~  suc  k ) )
2928con3d 593 . 2  |-  ( k  e.  om  ->  ( -.  k  ~~  suc  k  ->  -.  suc  k  ~~  suc  suc  k ) )
304, 8, 12, 16, 23, 29finds 4341 1  |-  ( A  e.  om  ->  -.  A  ~~  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1284    e. wcel 1433    =/= wne 2245   (/)c0 3251   class class class wbr 3785   suc csuc 4120   omcom 4331    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-er 6129  df-en 6245
This theorem is referenced by:  snnen2og  6345  1nen2  6347  php5dom  6349  php5fin  6366
  Copyright terms: Public domain W3C validator