| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version | ||
| Description: The converse of onsucelsucr 4252 implies excluded middle. On the other
hand, if |
| Ref | Expression |
|---|---|
| onsucelsucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucelsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem1 4271 |
. . . 4
| |
| 2 | 0elon 4147 |
. . . . . 6
| |
| 3 | onsucelsucexmidlem 4272 |
. . . . . 6
| |
| 4 | 2, 3 | pm3.2i 266 |
. . . . 5
|
| 5 | onsucelsucexmid.1 |
. . . . 5
| |
| 6 | eleq1 2141 |
. . . . . . 7
| |
| 7 | suceq 4157 |
. . . . . . . 8
| |
| 8 | 7 | eleq1d 2147 |
. . . . . . 7
|
| 9 | 6, 8 | imbi12d 232 |
. . . . . 6
|
| 10 | eleq2 2142 |
. . . . . . 7
| |
| 11 | suceq 4157 |
. . . . . . . 8
| |
| 12 | 11 | eleq2d 2148 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 232 |
. . . . . 6
|
| 14 | 9, 13 | rspc2va 2714 |
. . . . 5
|
| 15 | 4, 5, 14 | mp2an 416 |
. . . 4
|
| 16 | 1, 15 | ax-mp 7 |
. . 3
|
| 17 | elsuci 4158 |
. . 3
| |
| 18 | 16, 17 | ax-mp 7 |
. 2
|
| 19 | suc0 4166 |
. . . . . 6
| |
| 20 | p0ex 3959 |
. . . . . . 7
| |
| 21 | 20 | prid2 3499 |
. . . . . 6
|
| 22 | 19, 21 | eqeltri 2151 |
. . . . 5
|
| 23 | eqeq1 2087 |
. . . . . . 7
| |
| 24 | 23 | orbi1d 737 |
. . . . . 6
|
| 25 | 24 | elrab3 2750 |
. . . . 5
|
| 26 | 22, 25 | ax-mp 7 |
. . . 4
|
| 27 | 0ex 3905 |
. . . . . . 7
| |
| 28 | nsuceq0g 4173 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-mp 7 |
. . . . . 6
|
| 30 | df-ne 2246 |
. . . . . 6
| |
| 31 | 29, 30 | mpbi 143 |
. . . . 5
|
| 32 | pm2.53 673 |
. . . . 5
| |
| 33 | 31, 32 | mpi 15 |
. . . 4
|
| 34 | 26, 33 | sylbi 119 |
. . 3
|
| 35 | 19 | eqeq1i 2088 |
. . . . 5
|
| 36 | 19 | eqeq1i 2088 |
. . . . . . . 8
|
| 37 | 31, 36 | mtbi 627 |
. . . . . . 7
|
| 38 | 20 | elsn 3414 |
. . . . . . 7
|
| 39 | 37, 38 | mtbir 628 |
. . . . . 6
|
| 40 | eleq2 2142 |
. . . . . 6
| |
| 41 | 39, 40 | mtbii 631 |
. . . . 5
|
| 42 | 35, 41 | sylbi 119 |
. . . 4
|
| 43 | olc 664 |
. . . . 5
| |
| 44 | eqeq1 2087 |
. . . . . . . 8
| |
| 45 | 44 | orbi1d 737 |
. . . . . . 7
|
| 46 | 45 | elrab3 2750 |
. . . . . 6
|
| 47 | 21, 46 | ax-mp 7 |
. . . . 5
|
| 48 | 43, 47 | sylibr 132 |
. . . 4
|
| 49 | 42, 48 | nsyl 590 |
. . 3
|
| 50 | 34, 49 | orim12i 708 |
. 2
|
| 51 | 18, 50 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: ordsucunielexmid 4274 |
| Copyright terms: Public domain | W3C validator |