ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmid Unicode version

Theorem onsucelsucexmid 4273
Description: The converse of onsucelsucr 4252 implies excluded middle. On the other hand, if  y is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4252 does hold, as seen at nnsucelsuc 6093. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
onsucelsucexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  ->  suc  x  e. 
suc  y )
Assertion
Ref Expression
onsucelsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem onsucelsucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem1 4271 . . . 4  |-  (/)  e.  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) }
2 0elon 4147 . . . . . 6  |-  (/)  e.  On
3 onsucelsucexmidlem 4272 . . . . . 6  |-  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) }  e.  On
42, 3pm3.2i 266 . . . . 5  |-  ( (/)  e.  On  /\  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) }  e.  On )
5 onsucelsucexmid.1 . . . . 5  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  ->  suc  x  e. 
suc  y )
6 eleq1 2141 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  e.  y  <->  (/)  e.  y ) )
7 suceq 4157 . . . . . . . 8  |-  ( x  =  (/)  ->  suc  x  =  suc  (/) )
87eleq1d 2147 . . . . . . 7  |-  ( x  =  (/)  ->  ( suc  x  e.  suc  y  <->  suc  (/)  e.  suc  y ) )
96, 8imbi12d 232 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x  e.  y  ->  suc  x  e.  suc  y
)  <->  ( (/)  e.  y  ->  suc  (/)  e.  suc  y ) ) )
10 eleq2 2142 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  ( (/)  e.  y  <->  (/) 
e.  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) } ) )
11 suceq 4157 . . . . . . . 8  |-  ( y  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  suc  y  =  suc  { z  e.  { (/)
,  { (/) } }  |  ( z  =  (/)  \/  ph ) } )
1211eleq2d 2148 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  ( suc  (/)  e.  suc  y 
<->  suc  (/)  e.  suc  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } ) )
1310, 12imbi12d 232 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  ( ( (/)  e.  y  ->  suc  (/)  e.  suc  y )  <->  ( (/)  e.  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) }  ->  suc  (/)  e.  suc  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) } ) ) )
149, 13rspc2va 2714 . . . . 5  |-  ( ( ( (/)  e.  On  /\ 
{ z  e.  { (/)
,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  e.  On )  /\  A. x  e.  On  A. y  e.  On  (
x  e.  y  ->  suc  x  e.  suc  y
) )  ->  ( (/) 
e.  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  suc  (/)  e.  suc  { z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } ) )
154, 5, 14mp2an 416 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  suc  (/)  e.  suc  { z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } )
161, 15ax-mp 7 . . 3  |-  suc  (/)  e.  suc  { z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) }
17 elsuci 4158 . . 3  |-  ( suc  (/)  e.  suc  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) }  ->  ( suc  (/)  e.  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  \/  suc  (/)  =  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } ) )
1816, 17ax-mp 7 . 2  |-  ( suc  (/)  e.  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  \/  suc  (/)  =  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } )
19 suc0 4166 . . . . . 6  |-  suc  (/)  =  { (/)
}
20 p0ex 3959 . . . . . . 7  |-  { (/) }  e.  _V
2120prid2 3499 . . . . . 6  |-  { (/) }  e.  { (/) ,  { (/)
} }
2219, 21eqeltri 2151 . . . . 5  |-  suc  (/)  e.  { (/)
,  { (/) } }
23 eqeq1 2087 . . . . . . 7  |-  ( z  =  suc  (/)  ->  (
z  =  (/)  <->  suc  (/)  =  (/) ) )
2423orbi1d 737 . . . . . 6  |-  ( z  =  suc  (/)  ->  (
( z  =  (/)  \/ 
ph )  <->  ( suc  (/)  =  (/)  \/  ph )
) )
2524elrab3 2750 . . . . 5  |-  ( suc  (/)  e.  { (/) ,  { (/)
} }  ->  ( suc  (/)  e.  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) }  <->  ( suc  (/)  =  (/)  \/ 
ph ) ) )
2622, 25ax-mp 7 . . . 4  |-  ( suc  (/)  e.  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) } 
<->  ( suc  (/)  =  (/)  \/ 
ph ) )
27 0ex 3905 . . . . . . 7  |-  (/)  e.  _V
28 nsuceq0g 4173 . . . . . . 7  |-  ( (/)  e.  _V  ->  suc  (/)  =/=  (/) )
2927, 28ax-mp 7 . . . . . 6  |-  suc  (/)  =/=  (/)
30 df-ne 2246 . . . . . 6  |-  ( suc  (/)  =/=  (/)  <->  -.  suc  (/)  =  (/) )
3129, 30mpbi 143 . . . . 5  |-  -.  suc  (/)  =  (/)
32 pm2.53 673 . . . . 5  |-  ( ( suc  (/)  =  (/)  \/  ph )  ->  ( -.  suc  (/)  =  (/)  ->  ph )
)
3331, 32mpi 15 . . . 4  |-  ( ( suc  (/)  =  (/)  \/  ph )  ->  ph )
3426, 33sylbi 119 . . 3  |-  ( suc  (/)  e.  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  ph )
3519eqeq1i 2088 . . . . 5  |-  ( suc  (/)  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) } 
<->  { (/) }  =  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } )
3619eqeq1i 2088 . . . . . . . 8  |-  ( suc  (/)  =  (/)  <->  { (/) }  =  (/) )
3731, 36mtbi 627 . . . . . . 7  |-  -.  { (/)
}  =  (/)
3820elsn 3414 . . . . . . 7  |-  ( {
(/) }  e.  { (/) }  <->  { (/) }  =  (/) )
3937, 38mtbir 628 . . . . . 6  |-  -.  { (/)
}  e.  { (/) }
40 eleq2 2142 . . . . . 6  |-  ( {
(/) }  =  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) }  ->  ( { (/) }  e.  { (/)
}  <->  { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } ) )
4139, 40mtbii 631 . . . . 5  |-  ( {
(/) }  =  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) }  ->  -. 
{ (/) }  e.  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } )
4235, 41sylbi 119 . . . 4  |-  ( suc  (/)  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  -.  { (/) }  e.  { z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } )
43 olc 664 . . . . 5  |-  ( ph  ->  ( { (/) }  =  (/) 
\/  ph ) )
44 eqeq1 2087 . . . . . . . 8  |-  ( z  =  { (/) }  ->  ( z  =  (/)  <->  { (/) }  =  (/) ) )
4544orbi1d 737 . . . . . . 7  |-  ( z  =  { (/) }  ->  ( ( z  =  (/)  \/ 
ph )  <->  ( { (/)
}  =  (/)  \/  ph ) ) )
4645elrab3 2750 . . . . . 6  |-  ( {
(/) }  e.  { (/) ,  { (/) } }  ->  ( { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) }  <->  ( { (/)
}  =  (/)  \/  ph ) ) )
4721, 46ax-mp 7 . . . . 5  |-  ( {
(/) }  e.  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) }  <->  ( { (/) }  =  (/)  \/  ph )
)
4843, 47sylibr 132 . . . 4  |-  ( ph  ->  { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  | 
( z  =  (/)  \/ 
ph ) } )
4942, 48nsyl 590 . . 3  |-  ( suc  (/)  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) }  ->  -.  ph )
5034, 49orim12i 708 . 2  |-  ( ( suc  (/)  e.  { z  e.  { (/) ,  { (/)
} }  |  ( z  =  (/)  \/  ph ) }  \/  suc  (/)  =  { z  e. 
{ (/) ,  { (/) } }  |  ( z  =  (/)  \/  ph ) } )  ->  ( ph  \/  -.  ph )
)
5118, 50ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348   {crab 2352   _Vcvv 2601   (/)c0 3251   {csn 3398   {cpr 3399   Oncon0 4118   suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by:  ordsucunielexmid  4274
  Copyright terms: Public domain W3C validator