ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpipq2 Unicode version

Theorem mulpipq2 6561
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
mulpipq2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)

Proof of Theorem mulpipq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 5812 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
2 xp1st 5812 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
3 mulclpi 6518 . . . 4  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
41, 2, 3syl2an 283 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
5 xp2nd 5813 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
6 xp2nd 5813 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
7 mulclpi 6518 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
85, 6, 7syl2an 283 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
9 opexg 3983 . . 3  |-  ( ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N.  /\  ( ( 2nd `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V )
104, 8, 9syl2anc 403 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  e.  _V )
11 fveq2 5198 . . . . 5  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
1211oveq1d 5547 . . . 4  |-  ( x  =  A  ->  (
( 1st `  x
)  .N  ( 1st `  y ) )  =  ( ( 1st `  A
)  .N  ( 1st `  y ) ) )
13 fveq2 5198 . . . . 5  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
1413oveq1d 5547 . . . 4  |-  ( x  =  A  ->  (
( 2nd `  x
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) )
1512, 14opeq12d 3578 . . 3  |-  ( x  =  A  ->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  A )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  y ) )
>. )
16 fveq2 5198 . . . . 5  |-  ( y  =  B  ->  ( 1st `  y )  =  ( 1st `  B
) )
1716oveq2d 5548 . . . 4  |-  ( y  =  B  ->  (
( 1st `  A
)  .N  ( 1st `  y ) )  =  ( ( 1st `  A
)  .N  ( 1st `  B ) ) )
18 fveq2 5198 . . . . 5  |-  ( y  =  B  ->  ( 2nd `  y )  =  ( 2nd `  B
) )
1918oveq2d 5548 . . . 4  |-  ( y  =  B  ->  (
( 2nd `  A
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )
2017, 19opeq12d 3578 . . 3  |-  ( y  =  B  ->  <. (
( 1st `  A
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) >.  =  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )
21 df-mpq 6535 . . 3  |-  .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
)
2215, 20, 21ovmpt2g 5655 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V )  -> 
( A  .pQ  B
)  =  <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
2310, 22mpd3an3 1269 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601   <.cop 3401    X. cxp 4361   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   N.cnpi 6462    .N cmi 6464    .pQ cmpq 6467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-ni 6494  df-mi 6496  df-mpq 6535
This theorem is referenced by:  mulpipq  6562
  Copyright terms: Public domain W3C validator