ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0rei Unicode version

Theorem nn0rei 8299
Description: A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
Hypothesis
Ref Expression
nn0re.1  |-  A  e. 
NN0
Assertion
Ref Expression
nn0rei  |-  A  e.  RR

Proof of Theorem nn0rei
StepHypRef Expression
1 nn0ssre 8292 . 2  |-  NN0  C_  RR
2 nn0re.1 . 2  |-  A  e. 
NN0
31, 2sselii 2996 1  |-  A  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 1433   RRcr 6980   NN0cn0 8288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-cnex 7067  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073  ax-rnegex 7085
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-int 3637  df-inn 8040  df-n0 8289
This theorem is referenced by:  nn0cni  8300  nn0le2xi  8338  nn0lele2xi  8339  numlt  8501  numltc  8502  decle  8510  decleh  8511
  Copyright terms: Public domain W3C validator