ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndir Unicode version

Theorem nndir 6092
Description: Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
Assertion
Ref Expression
nndir  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  .o  C )  =  ( ( A  .o  C )  +o  ( B  .o  C
) ) )

Proof of Theorem nndir
StepHypRef Expression
1 nndi 6088 . . 3  |-  ( ( C  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  ( C  .o  ( A  +o  B ) )  =  ( ( C  .o  A )  +o  ( C  .o  B ) ) )
213coml 1145 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  .o  ( A  +o  B ) )  =  ( ( C  .o  A )  +o  ( C  .o  B ) ) )
3 nnacl 6082 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
4 nnmcom 6091 . . . . 5  |-  ( ( C  e.  om  /\  ( A  +o  B
)  e.  om )  ->  ( C  .o  ( A  +o  B ) )  =  ( ( A  +o  B )  .o  C ) )
53, 4sylan2 280 . . . 4  |-  ( ( C  e.  om  /\  ( A  e.  om  /\  B  e.  om )
)  ->  ( C  .o  ( A  +o  B
) )  =  ( ( A  +o  B
)  .o  C ) )
65ancoms 264 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om )  ->  ( C  .o  ( A  +o  B
) )  =  ( ( A  +o  B
)  .o  C ) )
763impa 1133 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  .o  ( A  +o  B ) )  =  ( ( A  +o  B )  .o  C
) )
8 nnmcom 6091 . . . . 5  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  =  ( A  .o  C ) )
98ancoms 264 . . . 4  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( C  .o  A
)  =  ( A  .o  C ) )
1093adant2 957 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  .o  A )  =  ( A  .o  C
) )
11 nnmcom 6091 . . . . 5  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  =  ( B  .o  C ) )
1211ancoms 264 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( C  .o  B
)  =  ( B  .o  C ) )
13123adant1 956 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( C  .o  B )  =  ( B  .o  C
) )
1410, 13oveq12d 5550 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  +o  ( C  .o  B ) )  =  ( ( A  .o  C )  +o  ( B  .o  C
) ) )
152, 7, 143eqtr3d 2121 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  .o  C )  =  ( ( A  .o  C )  +o  ( B  .o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   omcom 4331  (class class class)co 5532    +o coa 6021    .o comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  addassnq0  6652
  Copyright terms: Public domain W3C validator