ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndi Unicode version

Theorem nndi 6088
Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )

Proof of Theorem nndi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
21oveq2d 5548 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  C ) ) )
3 oveq2 5540 . . . . . . 7  |-  ( x  =  C  ->  ( A  .o  x )  =  ( A  .o  C
) )
43oveq2d 5548 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) )
52, 4eqeq12d 2095 . . . . 5  |-  ( x  =  C  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) ) )
65imbi2d 228 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) ) ) )
7 oveq2 5540 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 5548 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  (/) ) ) )
9 oveq2 5540 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
109oveq2d 5548 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
118, 10eqeq12d 2095 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) ) )
12 oveq2 5540 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1312oveq2d 5548 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  y ) ) )
14 oveq2 5540 . . . . . . 7  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
1514oveq2d 5548 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) ) )
1613, 15eqeq12d 2095 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) )  <->  ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) ) ) )
17 oveq2 5540 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1817oveq2d 5548 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  +o  x ) )  =  ( A  .o  ( B  +o  suc  y
) ) )
19 oveq2 5540 . . . . . . 7  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
2019oveq2d 5548 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  +o  ( A  .o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) )
2118, 20eqeq12d 2095 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  ( B  +o  x
) )  =  ( ( A  .o  B
)  +o  ( A  .o  x ) )  <-> 
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
22 nna0 6076 . . . . . . . . 9  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2322adantl 271 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  +o  (/) )  =  B )
2423oveq2d 5548 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( A  .o  B
) )
25 nnmcl 6083 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
26 nna0 6076 . . . . . . . 8  |-  ( ( A  .o  B )  e.  om  ->  (
( A  .o  B
)  +o  (/) )  =  ( A  .o  B
) )
2725, 26syl 14 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  (/) )  =  ( A  .o  B
) )
2824, 27eqtr4d 2116 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
29 nnm0 6077 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
3029adantr 270 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  (/) )  =  (/) )
3130oveq2d 5548 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  ( A  .o  (/) ) )  =  ( ( A  .o  B )  +o  (/) ) )
3228, 31eqtr4d 2116 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  (/) ) )  =  ( ( A  .o  B )  +o  ( A  .o  (/) ) ) )
33 oveq1 5539 . . . . . . . . 9  |-  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  (
( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
) )
34 nnasuc 6078 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
35343adant1 956 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y ) )
3635oveq2d 5548 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( A  .o  suc  ( B  +o  y
) ) )
37 nnacl 6082 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
38 nnmsuc 6079 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  .o  suc  ( B  +o  y
) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
3937, 38sylan2 280 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
40393impb 1134 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  ( B  +o  y ) )  =  ( ( A  .o  ( B  +o  y ) )  +o  A ) )
4136, 40eqtrd 2113 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  ( B  +o  y
) )  +o  A
) )
42 nnmsuc 6079 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
43423adant2 957 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y )  +o  A ) )
4443oveq2d 5548 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
45 nnmcl 6083 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
46 nnaass 6087 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  .o  B
)  e.  om  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4725, 46syl3an1 1202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  .o  y
)  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y
) )  +o  A
)  =  ( ( A  .o  B )  +o  ( ( A  .o  y )  +o  A ) ) )
4845, 47syl3an2 1203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( A  e.  om  /\  y  e.  om )  /\  A  e.  om )  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B
)  +o  ( ( A  .o  y )  +o  A ) ) )
49483exp 1137 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e. 
om  /\  y  e.  om )  ->  ( A  e.  om  ->  ( (
( A  .o  B
)  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
5049exp4b 359 . . . . . . . . . . . . . . 15  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) ) )
5150pm2.43a 50 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( A  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5251com4r 85 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) ) )
5352pm2.43i 48 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) ) ) )
54533imp 1132 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A )  =  ( ( A  .o  B )  +o  (
( A  .o  y
)  +o  A ) ) )
5544, 54eqtr4d 2116 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  B
)  +o  ( A  .o  suc  y ) )  =  ( ( ( A  .o  B
)  +o  ( A  .o  y ) )  +o  A ) )
5641, 55eqeq12d 2095 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) )  <->  ( ( A  .o  ( B  +o  y ) )  +o  A )  =  ( ( ( A  .o  B )  +o  ( A  .o  y ) )  +o  A ) ) )
5733, 56syl5ibr 154 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  y  e.  om )  ->  (
( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) )
58573exp 1137 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( y  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
5958com3r 78 . . . . . 6  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( B  e.  om  ->  ( ( A  .o  ( B  +o  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  y
) )  ->  ( A  .o  ( B  +o  suc  y ) )  =  ( ( A  .o  B )  +o  ( A  .o  suc  y ) ) ) ) ) )
6059impd 251 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  .o  ( B  +o  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  y ) )  ->  ( A  .o  ( B  +o  suc  y
) )  =  ( ( A  .o  B
)  +o  ( A  .o  suc  y ) ) ) ) )
6111, 16, 21, 32, 60finds2 4342 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  x ) )  =  ( ( A  .o  B )  +o  ( A  .o  x
) ) ) )
626, 61vtoclga 2664 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) )
6362expdcom 1371 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) ) ) )
64633imp 1132 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   (/)c0 3251   suc csuc 4120   omcom 4331  (class class class)co 5532    +o coa 6021    .o comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  nnmass  6089  nndir  6092  distrpig  6523  addcmpblnq0  6633  nnanq0  6648  distrnq0  6649  addassnq0  6652
  Copyright terms: Public domain W3C validator