ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opbrop Unicode version

Theorem opbrop 4437
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
Hypotheses
Ref Expression
opbrop.1  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
opbrop.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
Assertion
Ref Expression
opbrop  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Distinct variable groups:    x, y, z, w, v, u, A   
x, B, y, z, w, v, u    x, C, y, z, w, v, u    x, D, y, z, w, v, u   
x, S, y, z, w, v, u    ph, x, y    ps, z, w, v, u
Allowed substitution hints:    ph( z, w, v, u)    ps( x, y)    R( x, y, z, w, v, u)

Proof of Theorem opbrop
StepHypRef Expression
1 opbrop.1 . . . 4  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
21copsex4g 4002 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph )  <->  ps )
)
32anbi2d 451 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) )  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  ps ) ) )
4 opexg 3983 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
5 opexg 3983 . . 3  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e. 
_V )
6 eleq1 2141 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( S  X.  S
)  <->  <. A ,  B >.  e.  ( S  X.  S ) ) )
76anbi1d 452 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) ) ) )
8 eqeq1 2087 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( x  = 
<. z ,  w >.  <->  <. A ,  B >.  =  <. z ,  w >. )
)
98anbi1d 452 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
109anbi1d 452 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
11104exbidv 1791 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
127, 11anbi12d 456 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
)  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) ) )
13 eleq1 2141 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( S  X.  S
)  <->  <. C ,  D >.  e.  ( S  X.  S ) ) )
1413anbi2d 451 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) ) )
15 eqeq1 2087 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( y  = 
<. v ,  u >.  <->  <. C ,  D >.  =  <. v ,  u >. )
)
1615anbi2d 451 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )
) )
1716anbi1d 452 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph ) ) )
18174exbidv 1791 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  E. z E. w E. v E. u ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph )
) )
1914, 18anbi12d 456 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) )  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
20 opbrop.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
2112, 19, 20brabg 4024 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  <. C ,  D >.  e.  _V )  ->  ( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
224, 5, 21syl2an 283 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
23 opelxpi 4394 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
24 opelxpi 4394 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( S  X.  S
) )
2523, 24anim12i 331 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) )
2625biantrurd 299 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ps  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  ps ) ) )
273, 22, 263bitr4d 218 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601   <.cop 3401   class class class wbr 3785   {copab 3838    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369
This theorem is referenced by:  ecopoveq  6224  oviec  6235
  Copyright terms: Public domain W3C validator